This paper presents the dynamic analysis of rotating structures using node-dependent kinematics (NDK) one-dimensional (1D) elements. These elements have the capabilities to assume a different kinematic at each node of a beam element, that is, the kinematic assumptions can be continuously varied along the beam axis. Node-dependent kinematic 1D elements have been extended to the dynamic analysis of rotors where the response of the slender shaft, as well as the responses of disks, has to be evaluated. Node dependent kinematic capabilities have been exploited to impose simple kinematic assumptions along the shaft and refined kinematic models where the in- and out-of-plane deformations appear, that is, on the disks. The governing equations of the rotordynamics problem have been derived in a unified and compact form using the Carrera unified formulation. Refined beam models based on Taylor and Lagrange expansions (LEs) have been considered. Single- and multiple-disk rotors have been investigated. The effects of flexible supports have also been included. The results show that the use of the node-dependent kinematic elements allows the accuracy of the model to be increased only where it is required. This approach leads to a reduction of the computational cost compared to a three-dimensional model while the accuracy of the results is preserved.

References

References
1.
Carrera
,
E.
, and
Zappino
,
E.
,
2017
, “
One-Dimensional Finite Element Formulation With Node-Dependent Kinematics
,”
Comput. Struct.
,
192
, pp.
114
125
.
2.
Reddy
,
J. N.
,
2004
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
,
2nd ed.
,
CRC Press
, Boca Raton, FL.
3.
Qin
,
Z.
, and
Chu
,
F.
,
2015
, “
Finite Element Modeling Techniques for Rotors With Cylindrical Shells
,”
14th IFToMM World Congress
,
Congress in Mechanism and Machine Science, Taipei, Taiwan
,
Oct. 25–30
, pp.
478
482
.
4.
Hu
,
L.
, and
Palazzolo
,
A.
,
2017
, “
Solid Element Rotordynamic Modeling of a Rotor on a Flexible Support Structure Utilizing Multiple-Input and Multiple-Output Support Transfer Functions
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012503
.
5.
Surana
,
K. S.
,
1980
, “
Transition Finite Elements for Three-Dimensional Stress Analysis
,”
Int. J. Numer. Methods Eng.
,
15
(
7
), pp.
991
1020
.
6.
Genta
,
G.
,
Delprete
,
C.
, and
Bassani
,
D.
,
1996
, “
DYNROT: A Finite Element Code for Rotordynamic Analysis Based on Complex Co-Ordinates
,”
Eng. Comput.
,
13
(
6
), pp.
86
109
.
7.
Reddy
,
J.
,
1993
, “
An Evaluation of Equivalent-Single-Layer and Layerwise Theories of Composite Laminates
,”
Compos. Struct.
,
25
(
1–4
), pp.
21
35
.
8.
Robbins
,
D.
, and
Reddy
,
J.
,
1996
, “
Variable Kinematic Modelling of Laminated Composite Plates
,”
Int. J. Numer. Methods Eng.
,
39
(
13
), pp.
2283
2317
.
9.
Wagner
,
M. B.
,
Younan
,
A.
,
Allaire
,
P.
, and
Cogill
,
R.
,
2011
, “
Model Reduction Methods for Rotor Dynamic Analysis: A Survey and Review
,”
Int. J. Rotating Mach.
,
2010
, p.
273716
.
10.
Rouch
,
K.
, and
Kao
,
J.
,
1980
, “
Dynamic Reduction in Rotor Dynamics by the Finite Element Method
,”
ASME J. Mech. Des.
,
102
(
2
), pp.
360
368
.
11.
Stephenson
,
R.
, and
Rouch
,
K.
,
1993
, “
Modeling Rotating Shafts Using Axisymmetric Solid Finite Elements With Matrix Reduction
,”
ASME J. Vib. Acoust.
,
115
(
4
), pp.
484
489
.
12.
Khulief
,
Y.
, and
Mohiuddin
,
M.
,
1997
, “
On the Dynamic Analysis of Rotors Using Modal Reduction
,”
Finite Elem. Anal. Des.
,
26
(
1
), pp.
41
55
.
13.
Seshu
,
P.
,
1997
, “
Substructuring and Component Mode Synthesis
,”
Shock Vib.
,
4
(
3
), pp.
199
210
.
14.
Rosyid
,
A.
,
El-Madany
,
M.
, and
Alata
,
M.
,
2013
, “
Reduction of Rotor-Bearing-Support Finite Element Model Through Substructuring
,”
Int. J. Mech., Mechatronics Eng.
,
7
(
12
), pp.
2438
2445
.https://waset.org/publications/9996695/reduction-of-rotor-bearing-support-finite-element-model-through-substructuring
15.
Zuo
,
Y.
,
Wang
,
J.
,
Ma
,
W.
,
Zhai
,
X.
, and
Yao
,
X.
,
2014
, “
Method for Selecting Master Degrees of Freedom for Rotating Substructure
,”
ASME
Paper No. GT2014-25716.
16.
Carrera
,
E.
,
Zappino
,
E.
, and
Li
,
G.
,
2017
, “
Finite Element Models With Node-Dependent Kinematics for the Analysis of Composite Beam Structures
,”
Composites, Part B
, 132, pp. 35–48.
17.
Zappino
,
E.
,
Li
,
G.
,
Pagani
,
A.
, and
Carrera
,
E.
,
2017
, “
Global-Local Analysis of Laminated Plates by Node-Dependent Kinematic Finite Elements With Variable ESL/LW Capabilities
,”
Compos. Struct.
,
172
, pp.
1
14
.
18.
Carrera
,
E.
, and
Filippi
,
M.
,
2016
, “
A Refined One-Dimensional Rotordynamics Model With Three-Dimensional Capabilities
,”
J. Sound Vib.
,
366
, pp.
343
356
.
19.
Carrera
,
E.
, and
Filippi
,
M.
,
2015
, “
Vibration Analysis of Thin/Thick, Composites/Metallic Spinning Cylindrical Shells by Refined Beam Models
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031020
.
20.
Filippi
,
M.
, and
Carrera
,
E.
,
2017
, “
Dynamic Analyses of Axisymmetric Rotors Through Three-Dimensional Approaches and High-Fidelity Beam Theories
,”
ASME J. Vib. Acoust.
,
139
(
6
), p.
061008
.
21.
Entezari
,
A.
,
Kouchakzadeh
,
M. A.
,
Carrera
,
E.
, and
Filippi
,
M.
,
2017
, “
A Refined Finite Element Method for Stress Analysis of Rotors and Rotating Disks With Variable Thickness
,”
Acta Mech.
,
228
(
2
), pp.
575
594
.
22.
Entezari
,
A.
,
Filippi
,
M.
, and
Carrera
,
E.
,
2017
, “
On Dynamic Analysis of Variable Thickness Disks and Complex Rotors Subjected to Thermal and Mechanical Prestresses
,”
J. Sound Vib.
,
405
, pp.
68
85
.
23.
Carrera
,
E.
,
Cinefra
,
M.
,
Petrolo
,
M.
, and
Zappino
,
E.
,
2014
,
Finite Element Analysis of Structures Through Unified Formulation
,
Wiley
, Hoboken, NJ.
24.
Washizu
,
K.
,
1968
,
Variational Methods in Elasticity and Plasticity
,
Pergamon Press
, Oxford, UK.
25.
Zappino
,
E.
, and
Carrera
,
E.
,
2018
, “
Multidimensional Model for the Stress Analysis of Reinforced Shell Structures
,”
AIAA J.
,
56
(
4
), pp.
1647
1661
.
26.
Kirchgäβner
,
B.
,
2016
, “
Finite Elements in Rotordynamics
,”
Procedia Eng.
,
144
, pp.
736
750
.
27.
Hetzler
,
H.
,
2009
, “
On Moving Continua With Contacts and Sliding Friction: Modeling, General Properties and Examples
,”
Int. J. Solids Struct.
,
46
(
13
), pp.
2556
2570
.
28.
Carrera
,
E.
, and
Filippi
,
M.
,
2014
, “
Variable Kinematic One-Dimensional Finite Elements for the Analysis of Rotors Made of Composite Materials
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
092501
.
29.
Genta
,
G.
,
Silvagni
,
M.
, and
Qingwen
,
C.
,
2013
, “
Dynamic Analysis of Rotors: Comparison Between the Simplified One-dimensional Results and Those Obtained Through 3D Modeling
,”
Congresso Nazionale AIMETA
,
Torino, Italy
,
Sept. 17–20
.
30.
Creci
,
G.
,
Menezes
,
J. C.
,
Barbosa
,
J. R.
, and
Corrá
,
J. A.
,
2011
, “
Rotordynamic Analysis of a 5-Kilonewton Thrust Gas Turbine by Considering Bearing Dynamics
,”
J. Propul. Power
,
27
(
2
), pp.
330
331
.
31.
Wagner
,
N.
, and
Helfrich
,
R.
,
2013
, “
Dynamics of Rotors in Complex Structures
,”
NAFEMS World Congress, Salzburg, Austria
, June 9–12. https://www.researchgate.net/publication/237148581_Dynamics_of_rotors_in_complex_structures
You do not currently have access to this content.