Reactor coolant pump (RCP) is one of the most important equipment of the coolant loop in a pressurized water reactor system. Its safety relies on the characteristics of the rotordynamic system. For a canned motor RCP, the liquid coolant fills up the clearance between the metal shields of the rotor and stator inside the canned motor, forming a long clearance flow. The fluid-induced forces of the clearance flow in canned motor RCP and their effects on the rotordynamic characteristics of the pump are numerically and experimentally analyzed in this work. A transient computational fluid dynamics (CFD) method has been used to investigate the fluid-induced force of the clearance. A vertical experiment rig has also been established for the purpose of measuring the fluid-induced forces. Fluid-induced forces of clearance flow with various whirl frequencies and various boundary conditions are obtained through the CFD method and the experiment. Results show that clearance flow brings large mass coefficient into the rotordynamic system and the direct stiffness coefficient is negative under the normal operating condition. The rotordynamic stability of canned motor RCP does not deteriorate despite the existence of significant cross-coupled stiffness coefficient from the fluid-induced forces of the clearance flow.

References

References
1.
De
,
C.
,
Zhen-Qiang
,
Y.
,
Ya-Bo
,
X.
, and
Hong
,
S.
,
2014
, “
Numerical Study on Seismic Response of the Reactor Coolant Pump in Advanced Passive Pressurized Water Reactor
,”
Nucl. Eng. Des.
,
278
, pp.
39
49
.
2.
Fritz
,
R. J.
,
1970
, “
The Effects of an Annular Fluid on the Vibrations of a Long Rotor—Part 1: Theory
,”
J. Basic Eng.
,
92
(
4
), pp.
923
929
.
3.
Fritz
,
R. J.
,
1970
, “
The Effects of an Annular Fluid on the Vibrations of a Long Rotor—Part 2: Test
,”
ASME J. Basic Eng.
,
92
(
4
), pp.
930
937
.
4.
Childs
,
D. W.
,
1983
, “
Dynamic Analysis of Turbulent Annular Seals Based on Hirs' Lubrication Equation
,”
J. Lubr. Technol.
,
105
(
3
), pp.
429
436
.
5.
Childs
,
D. W.
,
Mclean
,
J. E.
, Jr.,
Zhang
,
M.
, and
Arthur
,
S. P.
,
2016
, “
Rotordynamic Performance of a Negative-Swirl Brake for a Tooth-on-Stator Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
062505
.
6.
Iwatsubo
,
T.
,
1980
, “
Evaluation of Instability Forces of Labyrinth Seals in Turbines or Compressors
,” Rotordynamic Instability Problems in High Performance Turbomachinery, NASA CP-2133, Texas A&M University, College Station, TX, pp.
139
167
.
7.
Iwatsubo
,
T.
, and
Ishimaru
,
H.
,
2010
, “
Consideration of Whirl Frequency Ratio and Effective Damping Coefficient of Seal
,”
J. Syst. Des. Dyn.
,
4
(
1
), pp.
177
188
.
8.
Kanemori
,
Y.
, and
Iwatsubo
,
T.
,
1989
, “
Experimental Study of Dynamical Characteristics of a Long Annular Seal (In the Case of Concentric Rotor and Outer Cylinder)
,”
JSME Int. J. Ser. 2
,
32
(
2
), pp.
218
224
.
9.
Kanemori
,
Y.
, and
Iwatsubo
,
T.
,
1994
, “
Rotordynamic Analysis of Submerged Motor Pumps: Influence of Long Seal on the Stability of Fluid Machinery
,”
JSME Int. J. Ser. C
,
37
(
1
), pp.
193
201
.
10.
Antunes
,
J.
,
Axisa
,
F.
, and
Grunenwald
,
T.
,
1996
, “
Dynamics of Rotors Immersed in Eccentric Annular Flow—Part 1: Theory
,”
J. Fluids Struct.
,
10
(
8
), pp.
893
918
.
11.
Grunenwald
,
T.
,
Axisa
,
F.
,
Bennett
,
G.
, and
Antunesc
,
J.
,
1996
, “
Dynamics of Rotors Immersed in Eccentric Annular Flow—Part 2: Experiments
,”
J. Fluids Struct.
,
10
(
8
), pp.
919
944
.
12.
Dietzen
,
F. J.
, and
Nordmann
,
R.
,
1987
, “
Calculating Rotordynamic Coefficients of Seals by Finite Difference Techniques
,”
ASME J. Tribol.
,
109
(
3
), pp.
388
394
.
13.
Rhode
,
D. L.
,
Hensel
,
S. J.
, and
Guidry
,
M. J.
,
1992
, “
Labyrinth Seal Rotordynamic Forces Using a Three-Dimensional Navier-Stokes Code
,”
ASME J. Tribol.
,
114
(
4
), pp.
683
689
.
14.
Arghir
,
M.
, and
Frêne
,
J.
,
1999
, “
A Quasi-Two-Dimensional Method for the Rotordynamic Analysis of Centered Labyrinth Liquid Seals
,”
ASME J. Eng. Gas Turbines Power
,
121
(
1
), pp.
144
152
.
15.
Athavale
,
M.
, and
Przekwas
,
A.
,
1994
, “
SCISEAL: A CFD Code for Analysis of Fluid Dynamic Forces in Seals
,” NASA Workshop on Seals and Flow Code Development-1993, NASA CP-10136.
16.
Moore
,
J. J.
, and
Palazzolo
,
A. B.
,
1999
, “
Rotordynamic Force Prediction of Whirling Centrifugal Impeller Shroud Passages Using Computational Fluid Dynamic Techniques
,” ASME International Gas Turbine and Aeroengine Congress and Exposition, Indianapolis, IN, June 9–12.
17.
Moore
,
J. J.
,
Ransom
,
D. L.
, and
Viana
,
F.
,
2010
, “
Rotordynamic Force Prediction of Centrifugal Compressor Impellers Using Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
042504
.
18.
Subramanian
,
S.
,
Sekhar
,
A. S.
, and
Prasad
,
B. V. S. S. S.
,
2016
, “
Rotordynamic Characteristics of Rotating Labyrinth Gas Turbine Seal With Centrifugal Growth
,”
Tribol. Int.
,
97
, pp.
349
59
.
19.
Chochua
,
G.
, and
Soulas
,
T. A.
,
2006
, “
Numerical Modeling of Rotordynamic Coefficients for Deliberately Roughened Stator Gas Annular Seals
,”
ASME J. Tribol.
,
129
(
2
), pp.
424
429
.
20.
Yan
,
X.
,
Li
,
J.
, and
Feng
,
Z.
,
2011
, “
Investigations on the Rotordynamic Characteristics of a Hole-Pattern Seal Using Transient CFD and Periodic Circular Orbit Model
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041007
.
21.
Yan
,
X.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
A Generalized Prediction Method for Rotordynamic Coefficients of Annular Gas Seals
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
092506
.
22.
Wu
,
D.
,
Jiang
,
X.
,
Li
,
S.
, and
Wang
,
L.
,
2016
, “
A New Transient CFD Method for Determining the Dynamic Coefficients of Liquid Annular Seals
,”
J. Mech. Sci. Technol.
,
30
(
8
), pp.
3477
3486
.
23.
Untaroiu
,
A.
,
Untaroiu
,
C. D.
,
Wood
,
H. G.
, and
Allaire
,
P. E.
,
2013
, “
Numerical Modeling of Fluid-Induced Rotordynamic Forces in Seals With Large Aspect Ratios
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012501
.
24.
Untaroiu
,
A.
,
Hayrapetian
,
V.
,
Untaroiu
,
C. D.
,
Allaire
,
P. E.
,
Wood
,
H. G.
,
Schiavello
,
B.
, and
McGuire
,
J.
,
2011
, “
Fluid-Induced Forces in Pump Liquid Seals With Large Aspect Ratio
,”
ASME
Paper No. AJK2011-06085
.
25.
Brown
,
P. D.
, and
Childs
,
D. W.
,
2012
, “
Measurement Versus Predictions of Rotordynamic Coefficients of a Hole-Pattern Gas Seal With Negative Preswirl
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122503
.
26.
Mehta
,
N. J.
, and
Childs
,
D. W.
,
2014
, “
Measured Comparison of Leakage and Rotordynamic Characteristics for a Slanted-Tooth and a Straight-Tooth Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
012501
.
27.
Kerr
,
B. G.
,
2005
,
Experimental and Theoretical Rotordynamic Coefficients and Leakage of Straight Smooth Annular Gas Seals
, M.S. thesis, Texas A&M University, College Station, TX.
28.
Kirk
,
G.
, and
Gao
,
R.
,
2012
, “
Influence of Preswirl on Rotordynamic Characteristics of Labyrinth Seals
,”
Tribol. Trans.
,
55
(
3
), pp.
357
364
.
29.
Sun
,
D.
,
Wang
,
S.
,
Xiao
,
Z.
,
Meng
,
J.
,
Wang
,
X.
, and
Zheng
,
T.
,
2015
, “
Measurement Versus Predictions of Rotordynamic Coefficients of Seal With Swirl Brakes
,”
Mech. Mach. Theory
,
94
, pp.
188
99
.
30.
Ertas
,
B. H.
,
Delgado
,
A.
, and
Vannini
,
G.
,
2012
, “
Rotordynamic Force Coefficients for Three Types of Annular Gas Seals With Inlet Preswirl and High Differential Pressure Ratio
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
042503
.
31.
Jolly
,
P.
,
Hassini
,
A.
,
Arghir
,
M.
,
Bonneau
,
O.
, and
Guingo
,
S.
,
2014
, “
Experimental and Theoretical Rotordynamic Coefficients of Smooth and Round-Hole Pattern Water Fed Annular Seals
,”
ASME
Paper No. GT2014-25677.
32.
Kwanka
,
K.
,
2007
, “
Rotordynamic Coefficients of Short Labyrinth Gas Seals—General Dependency on Geometric and Physical Parameters
,”
Tribol. Trans.
,
50
(
4
), pp.
558
563
.
33.
Sreedharan
,
S. S.
,
Vannini
,
G.
, and
Mistry
,
H.
,
2014
, “
CFD Assessment of Rotordynamic Coefficients in Labyrinth Seals
,”
ASME
Paper No. GT2014-26999.
34.
Millsaps
,
K. T.
, and
Martinez-Sanchez
,
M.
,
1994
, “
Rotordynamic Forces in Labyrinth Seals: Theory and Experiment
,” NASA Conference Publication 3239, Workshop held at Texas A&M University, College Station, TX, pp.
179
207
.
35.
Zhai
,
L.
,
Wu
,
G.
,
Wei
,
X.
, and
Qin
,
D.
,
2015
, “
Theoretical and Experimental Analysis for Leakage Rate and Dynamic Characteristics of Herringbone-Grooved Liquid Seals
,”
Proc. Inst. Mech. Eng., Part J
,
229
(
7
), pp.
849
60
.
36.
ANSYS,
2013
, “
ANSYS FLUENT 15.0 Theory Guide
,” ANSYS, Cannonsberg, PA.
37.
Hu
,
Y.
,
Wang
,
D.
,
Yin
,
J.
, and
Wang
,
Y.
,
2014
, “
Numerical Analysis of Rotordynamic Coefficients of Annular Flow in Canned Motor RCP
,”
ASME
Paper No. ICONE22-30511.
You do not currently have access to this content.