Turbulent combustion of non-premixed jets issuing into a vitiated coflow is studied at coflow temperatures that do not significantly exceed the fuel auto-ignition temperatures, with the objective of observing the global features of lifted flames in this operating temperature regime and the role played by auto-ignition in flame stabilization. Three distinct modes of flame base motions are identified, which include a fluctuating lifted flame base (mode A), avalanche downstream motion of the flame base (mode B), and the formation and propagation of auto-ignition kernels (mode C). Reducing the confinement length of the hot coflow serves to highlight the role of auto-ignition in flame stabilization when the flame is subjected to destabilization by ambient air entrainment. The influence of auto-ignition is further assessed by computing ignition delay times for homogeneous CH4/air mixtures using chemical kinetic simulations and comparing them against the flow transit time corresponding to mean flame liftoff height of the bulk flame base. It is inferred from these studies that while auto-ignition is an active flame stabilization mechanism in this regime, the effect of turbulence may be crucial in determining the importance of auto-ignition toward stabilizing the flame at the conditions studied. An experimental investigation of auto-ignition characteristics at various jet Reynolds numbers reveals that turbulence appears to have a suppressing effect on the active role of auto-ignition in flame stabilization.

References

References
1.
Greene
,
D. L.
, and
Schafer
,
A.
,
2003
,
Reducing Greenhouse Gas Emissions From U.S. Transportation
,
Pew Center on Global Climate Change
,
Arlington, VA
.
2.
Pitts
,
W. M.
,
1989
, “
Assessment of Theories for the Behavior and Blowout of Lifted Turbulent Jet Diffusion Flames
,”
Proc. Combust. Inst.
,
22
(
1
), pp.
809
816
.
3.
Lyons
,
K. M.
,
2007
, “
Toward an Understanding of the Stabilization Mechanisms of Lifted Turbulent Jet Flames: Experiments
,”
Prog. Energy Combust. Sci.
,
33
(
2
), pp.
211
231
.
4.
Lawn
,
C. J.
,
2009
, “
Lifted Flames on Fuel Jets in Co-Flowing Air
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
1
30
.
5.
Wohl
,
K.
,
Kapp
,
N. M.
, and
Gazley
,
C.
,
1948
, “
The Stability of Open Flames
,”
Symp. Combust. Flame, Explos. Phenom.
,
3
(
1
), pp.
3
21
.
6.
Vanquickenborne
,
L.
, and
Van Tiggelen
,
A.
,
1966
, “
The Stabilization Mechanism of Lifted Diffusion Flames
,”
Combust. Flame
,
10
(
1
), pp.
59
69
.
7.
Peters
,
N.
, and
Williams
,
F.
,
1983
, “
Liftoff Characteristics of Turbulent Jet Diffusion Flames
,”
AIAA J.
,
21
(
3
), pp.
423
429
.
8.
Peters
,
N.
,
1983
, “
Local Quenching Due to Flame Stretch and Non-Premixed Turbulent Combustion
,”
Combust. Sci. Technol.
,
30
(
1–6
), pp.
1
17
.
9.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
10.
Buckmaster
,
J.
, and
Weber
,
R.
,
1996
, “
Edge-Flame-Holding
,”
Proc. Combust. Inst.
,
26
(
1
), pp.
1143
1149
.
11.
Müller
,
C.
,
Breitbach
,
H.
, and
Peters
,
N.
,
1994
, “
Partially Premixed Turbulent Flame Propagation in Jet Flames
,”
Proc. Combust. Inst.
,
25
(
1
), pp.
1099
1106
.
12.
Miake-Lye
,
R. C.
, and
Hammer
,
J. A.
,
1989
, “
Lifted Turbulent Jet Flames: A Stability Criterion Based on the Jet Large-Scale Structure
,”
Proc. Combust. Inst.
,
22
(
1
), pp.
817
824
.
13.
Upatnieks
,
A.
,
Driscoll
,
J. F.
,
Rasmussen
,
C. C.
, and
Ceccio
,
S. L.
,
2004
, “
Liftoff of Turbulent Jet Flames—Assessment of Edge Flame and Other Concepts Using Cinema-PIV
,”
Combust. Flame
,
138
(
3
), pp.
259
272
.
14.
Lamige
,
S.
,
Lyons
,
K. M.
,
Galizzi
,
C.
,
Kühni
,
M.
,
Mathieu
,
É.
, and
Escudié
,
D.
,
2015
, “
Lifting and Splitting of Nonpremixed Methane/Air Flames Due to Reactant Preheating
,”
Combust. Sci. Technol.
,
187
(
12
), pp.
1937
1958
.
15.
Markides
,
C. N.
, and
Mastorakos
,
E.
,
2005
, “
An Experimental Study of Hydrogen Autoignition in a Turbulent Co-Flow of Heated Air
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
883
891
.
16.
Markides
,
C. N.
,
De Paola
,
G.
, and
Mastorakos
,
E.
,
2007
, “
Measurements and Simulations of Mixing and Autoignition of an n-Heptane Plume in a Turbulent Flow of Heated Air
,”
Exp. Therm. Fluid Sci.
,
31
(
5
), pp.
393
401
.
17.
Markides
,
C. N.
, and
Mastorakos
,
E.
,
2011
, “
Experimental Investigation of the Effects of Turbulence and Mixing on Autoignition Chemistry
,”
Flow Turbul. Combust.
,
86
(
3–4
), pp.
585
608
.
18.
Mastorakos
,
E.
,
Baritaud
,
T. A.
, and
Poinsot
,
T. J.
,
1997
, “
Numerical Simulations of Autoignition in Turbulent Mixing Flows
,”
Combust. Flame
,
109
(
1–2
), pp.
198
223
.
19.
Markides
,
C. N.
, and
Mastorakos
,
E.
,
2008
, “
Flame Propagation Following the Autoignition of Axisymmetric Hydrogen, Acetylene, and Normal-Heptane Plumes in Turbulent Coflows of Hot Air
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011502
.
20.
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
57
97
.
21.
Masri
,
A. R.
,
Cao
,
R.
,
Pope
,
S. B.
, and
Goldin
,
G. M.
,
2004
, “
PDF Calculations of Turbulent Lifted Flames of H2/N2 Fuel Issuing Into a Vitiated Co-Flow
,”
Combust. Theory Modell.
,
8
(
1
), pp.
1
22
.
22.
Cabra
,
R.
,
Myhrvold
,
T.
,
Chen
,
J. Y.
,
Dibble
,
R. W.
,
Karpetis
,
A. N.
, and
Barlow
,
R. S.
,
2002
, “
Simultaneous Laser Raman-Rayleigh-Lif Measurements and Numerical Modeling Results of a Lifted Turbulent H2/N2 Jet Flame in a Vitiated Coflow
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1881
1888
.
23.
Cabra
,
R.
,
Chen
,
J. Y.
,
Dibble
,
R. W.
,
Karpetis
,
A. N.
, and
Barlow
,
R. S.
,
2005
, “
Lifted Methane–Air Jet Flames in a Vitiated Coflow
,”
Combust. Flame
,
143
(
4
), pp.
491
506
.
24.
Yoo
,
C. S.
,
Sankaran
,
R.
, and
Chen
,
J. H.
,
2009
, “
Three-Dimensional Direct Numerical Simulation of a Turbulent Lifted Hydrogen Jet Flame in Heated Coflow: Flame Stabilization and Structure
,”
J. Fluid Mech.
,
640
, pp.
453
481
.
25.
Yoo
,
C. S.
,
Richardson
,
E. S.
,
Sankaran
,
R.
, and
Chen
,
J. H.
,
2011
, “
A DNS Study on the Stabilization Mechanism of a Turbulent Lifted Ethylene Jet Flame in Highly-Heated Coflow
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1619
1627
.
26.
Oldenhof
,
E.
,
Tummers
,
M. J.
,
van Veen
,
E. H.
, and
Roekaerts
,
D. J. E. M.
,
2010
, “
Ignition Kernel Formation and Lift-Off Behaviour of Jet-In-Hot-Coflow Flames
,”
Combust. Flame
,
157
(
6
), pp.
1167
1178
.
27.
Gordon
,
R.
,
Masri
,
A.
,
Pope
,
S.
, and
Goldin
,
G.
,
2007
, “
A Numerical Study of Auto-Ignition in Turbulent Lifted Flames Issuing Into a Vitiated Co-Flow
,”
Combust. Theory Modell.
,
11
(
3
), pp.
351
376
.
28.
Gordon
,
R. L.
,
Masri
,
A. R.
,
Pope
,
S. B.
, and
Goldin
,
G. M.
,
2007
, “
Transport Budgets in Turbulent Lifted Flames of Methane Autoigniting in a Vitiated Co-Flow
,”
Combust. Flame
,
151
(
3
), pp.
495
511
.
29.
Arndt
,
C. M.
,
Gounder
,
J. D.
,
Meier
,
W.
, and
Aigner
,
M.
,
2012
, “
Auto-Ignition and Flame Stabilization of Pulsed Methane Jets in a Hot Vitiated Coflow Studied With High-Speed Laser and Imaging Techniques
,”
Appl. Phys. B
,
108
(
2
), pp.
407
417
.
30.
Eitel
,
F.
,
Pareja
,
J.
,
Johchi
,
A.
,
Böhm
,
B.
,
Geyer
,
D.
, and
Dreizler
,
A.
,
2017
, “
Temporal Evolution of Auto-Ignition of Ethylene and Methane Jets Propagating Into a Turbulent Hot Air Co-Flow Vitiated With NOx
,”
Combust. Flame
,
177
, pp.
193
206
.
31.
Macfarlane
,
A. R. W.
,
Dunn
,
M. J.
,
Juddoo
,
M.
, and
Masri
,
A. R.
,
2017
, “
Stabilisation of Turbulent Auto-Igniting Dimethyl Ether Jet Flames Issuing Into a Hot Vitiated Coflow
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
1661
1668
.
32.
Fleck
,
J. M.
,
Griebel
,
P.
,
Steinberg
,
A. M.
,
Arndt
,
C. M.
,
Naumann
,
C.
, and
Aigner
,
M.
,
2013
, “
Autoignition of Hydrogen/Nitrogen Jets in Vitiated Air Crossflows at Different Pressures
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3185
3192
.
33.
Fleck
,
J. M.
,
Griebel
,
P.
,
Steinberg
,
A. M.
,
Arndt
,
C. M.
, and
Aigner
,
M.
,
2013
, “
Auto-Ignition and Flame Stabilization of Hydrogen/Natural Gas/Nitrogen Jets in a Vitiated Cross-Flow at Elevated Pressure
,”
Int. J. Hydrogen Energy
,
38
(
36
), pp.
16441
16452
.
34.
Sidey
,
J.
, and
Mastorakos
,
E.
,
2015
, “
Visualization of MILD Combustion From Jets in Cross-Flow
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3537
3545
.
35.
Wagner
,
J. A.
,
Grib
,
S. W.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2015
, “
Flowfield Measurements and Flame Stabilization of a Premixed Reacting Jet in Vitiated Crossflow
,”
Combust. Flame
,
162
(
10
), pp.
3711
3727
.
36.
Sullivan
,
R.
,
Wilde
,
B.
,
Noble
,
R. D.
,
Seitzman
,
M. J.
, and
Lieuwen
,
C. T.
,
2014
, “
Time-Averaged Characteristics of a Reacting Fuel Jet in Vitiated Cross-Flow
,”
Combust. Flame
,
161
(
7
), pp.
1792
1803
.
37.
Micka
,
D. J.
, and
Driscoll
,
J. F.
,
2012
, “
Stratified Jet Flames in a Heated (1390 K) air Cross-Flow With Autoignition
,”
Combust. Flame
,
159
(
3
), pp.
1205
1214
.
38.
Patwardhan
,
S. S.
,
De
,
S.
,
Lakshmisha
,
K. N.
, and
Raghunandan
,
B. N.
,
2009
, “
CMC Simulations of Lifted Turbulent Jet Flame in a Vitiated Coflow
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1705
1712
.
39.
Navarro-Martinez
,
S.
, and
Kronenburg
,
A.
,
2011
, “
Flame Stabilization Mechanisms in Lifted Flames
,”
Flow Turbul. Combust.
,
87
(
2–3
), pp.
377
406
.
40.
Barlow
,
R. S.
,
2014
, “
New Burners
,” 12th International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames, Pleasanton, CA, July 31–Aug. 2, pp.
270
282.
41.
Ramachandran
,
A.
,
Tyler
,
D. A.
,
Patel
,
P. K.
,
Narayanaswamy
,
V.
, and
Lyons
,
K. M.
, “
Global Features of Flame Stabilization in Turbulent Non-Premixed Jet Flames in Vitiated Coflow
,”
AIAA
Paper No. 2015-2313.
42.
Meier
,
W.
,
Boxx
,
I.
,
Arndt
,
C.
,
Gamba
,
M.
, and
Clemens
,
N.
,
2011
, “
Investigation of Auto-Ignition of a Pulsed Methane Jet in Vitiated Air Using High-Speed Imaging Techniques
,”
ASME J. Eng. Gas Turbines Power
,
133
(
2
), p.
021504
.
43.
Muñiz
,
L.
, and
Mungal
,
M. G.
,
1997
, “
Instantaneous Flame-Stabilization Velocities in Lifted-Jet Diffusion Flames
,”
Combust. Flame
,
111
(
1–2
), pp.
16
31
.
44.
Watson
,
K. A.
,
Lyons
,
K. M.
,
Donbar
,
J. M.
, and
Carter
,
C. D.
,
1999
, “
Scalar and Velocity Field Measurements in a Lifted CH4–Air Diffusion Flame
,”
Combust. Flame
,
117
(
1–2
), pp.
257
271
.
45.
Oldenhof
,
E.
,
Tummers
,
M. J.
,
van Veen
,
E. H.
, and
Roekaerts
,
D. J. E. M.
,
2013
, “
Conditional Flow Field Statistics of Jet-In-Hot-Coflow Flames
,”
Combust. Flame
,
160
(
8
), pp.
1428
1440
.
46.
Oldenhof
,
E.
,
Tummers
,
M. J.
,
van Veen
,
E. H.
, and
Roekaerts
,
D. J. E. M.
,
2011
, “
Role of Entrainment in the Stabilisation of Jet-In-Hot-Coflow Flames
,”
Combust. Flame
,
158
(
8
), pp.
1553
1563
.
47.
Medwell
,
P. R.
, and
Dally
,
B. B.
,
2012
, “
Experimental Observation of Lifted Flames in a Heated and Diluted Coflow
,”
Energy Fuels
,
26
(
9
), pp.
5519
5527
.
48.
Gordon
,
R. L.
,
Masri
,
A. R.
, and
Mastorakos
,
E.
,
2008
, “
Simultaneous Rayleigh Temperature, OH- and CH2O-LIF Imaging of Methane Jets in a Vitiated Coflow
,”
Combust. Flame
,
155
(
1–2
), pp.
181
195
.
49.
Moore
,
N. J.
,
Kribs
,
J. D.
, and
Lyons
,
K. M.
,
2011
, “
Investigation of Jet-Flame Blowout With Lean-Limit Considerations
,”
Flow, Turbul. Combust.
,
87
(
4
), pp.
525
536
.
50.
Schulz
,
O.
, and
Noiray
,
N.
,
2019
, “
Large Eddy Simulation of a Premixed Flame in Hot Vitiated Crossflow With Analytically Reduced Chemistry
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031014
.
51.
Han
,
D.
, and
Mungal
,
M. G.
,
2003
, “
Simultaneous Measurements of Velocity and CH Distributions—Part 1: Jet Flames in Co-Flow
,”
Combust. Flame
,
132
(
3
), pp.
565
590
.
52.
Echekki
,
T.
, and
Chen
,
J. H.
,
2003
, “
Direct Numerical Simulation of Autoignition in Non-Homogeneous Hydrogen-Air Mixtures
,”
Combust. Flame
,
134
(
3
), pp.
169
191
.
53.
Papageorge
,
M. J.
,
Arndt
,
C.
,
Fuest
,
F.
,
Meier
,
W.
, and
Sutton
,
J. A.
,
2014
, “
High-Speed Mixture Fraction and Temperature Imaging of Pulsed, Turbulent Fuel Jets Auto-Igniting in High-Temperature, Vitiated Co-Flows
,”
Exp. Fluids
,
55
(
7
), p.
1763
.
You do not currently have access to this content.