In modern aircraft engines, reduced operating clearances between rotating blade tips and the surrounding casing increase the risk of blade/casing structural contacts, which may lead to high blade vibration levels. Therefore, structural contacts must now be accounted for as early as in the engine design stage. As the vibrations resulting from contact are intrinsically nonlinear, direct optimization of blade shapes based on vibration simulation is not realistic in an industrial context. A recent study on a blade featuring significantly lower vibration levels following contact event identified a potential criterion to estimate a blade sensitivity to contact interactions. This criterion is based on the notion of dynamic clearance, a quantity describing the evolution of the blade/casing clearance as the blade vibrates along one of its free-vibration modes. This paper presents an optimization procedure, which minimizes the dynamic clearance as a first step toward the integration of structural criteria in blade design. A dedicated blade geometry parameterization is introduced to allow for an efficient optimization of the blade shape. The optimization procedure is applied to the three-dimensional (3D) properties of two different blades. In both cases, initial and optimized blades are compared by means of an in-house numerical tool dedicated to the simulation of structural contact events with a surrounding casing. The simulations focus on rubbing phenomena, involving the vibration of a single blade. Simulation results show a significant reduction of vibration levels following contact interactions for the optimized blades. Critical speeds related to the mode on which the dynamic clearance is computed are successfully eliminated by the blade shape optimization. For the investigated blade geometries, backward sweep and backward lean angles are associated with reduced contact interactions compared to forward sweep and forward lean angles.

References

References
1.
Seo
,
S.-J.
,
Choi
,
S.-M.
, and
Kim
,
K.-Y.
,
2008
, “
Design Optimization of a Low-Speed Fan Blade With Sweep and Lean
,”
Proc. Inst. Mech. Eng., Part A
,
222
, pp.
87
92
.
2.
Sieverding
,
F.
,
Ribi
,
B.
,
Casey
,
M.
, and
Meyer
,
M.
,
2004
, “
Design of Industrial Axial Compressor Blade Sections for Optimal Range and Performance
,”
ASME J. Turbomach.
,
126
(
2
), pp. 323–331.
3.
Samad
,
A.
, and
Kim
,
K. Y.
,
2008
, “
Multi-Objective Optimization of an Axial Compressor Blade
,”
J. Mech. Sci. Technol.
,
22
(
5
), pp.
999
1007
.
4.
Sommer
,
L.
, and
Bestle
,
D.
,
2011
, “
Curvature Driven Two-Dimensional Multi-Objective Optimization of Compressor Blade Sections
,”
Aerosp. Sci. Technol.
,
15
(
4
), pp.
334
342
.
5.
Goel
,
S.
,
Cofer
,
J.
, and
Singh
,
H.
,
1996
, “
Turbine Airfoil Design Optimization
,”
ASME
Paper No. 96-GT-158.
6.
Chen
,
N.
,
Zhang
,
H.
,
Ning
,
F.
,
Xu
,
Y.
, and
Huang
,
W.
,
2006
, “
An Effective Turbine Blade Parametrization and Aerodynamic Optimization Procedure Using an Improved Response Surface Method
,”
ASME
Paper No. GT2006-90104.
7.
Erler
,
E.
,
Vo
,
H. D.
, and
Yu
,
H.
,
2016
, “
Desensitization of Axial Compressor Performance and Stability to Tip Clearance Size
,”
ASME J. Turbomach.
,
138
(
3
), p.
031006
.
8.
Benini
,
E.
,
2004
, “
Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor
,”
J. Propul. Power
,
20
(
3
), pp.
559
564
.
9.
Razavi
,
S. R.
,
Sammak
,
S.
, and
Boroomand
,
M.
,
2017
, “
Multidisciplinary Design and Optimizations of Swept and Leaned Transonic Rotor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
122601
.
10.
Pierret
,
S.
,
Filomeno Coelho
,
R.
, and
Kato
,
H.
,
2007
, “
Multidisciplinary and Multiple Operating Points Shape Optimization of Three-Dimensional Compressor Blades
,”
Struct. Multidiscip. Optim.
,
33
(
1
), pp.
61
70
.
11.
Ma
,
H.
,
Wang
,
D.
,
Tai
,
X.
, and
Wen
,
B.
,
2015
, “
Vibration Response Analysis of Blade-Disk Dovetail Structure Under Blade Tip Rubbing Condition
,”
J. Vib. Control
,
23
(2), pp. 252–271.
12.
Batailly
,
A.
,
Agrapart
,
Q.
,
Millecamps
,
A.
, and
Brunel
,
J.-F.
,
2016
, “
Experimental and Numerical Simulation of a Rotor/Stator Interaction Event Within an Industrial High-Pressure Compressor
,”
J. Sound Vib.
,
375
, pp.
308
331
.
13.
Schmiechen
,
P.
,
1997
, “
Travelling Wave Speed Coincidence
,”
Ph.D. thesis
, University of London, London.https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/dynamics/40375703.PDF
14.
Muszynska
,
A.
,
1986
, “
Whirl and Whip-Rotor/Bearing Stability Problems
,”
J. Sound Vib.
,
110
(
3
), pp.
443
462
.
15.
Sinha
,
S. K.
,
2013
, “
Rotordynamic Analysis of Asymmetric Turbofan Rotor Due to Fan Blade-Loss Event With Contact-Impact Rub Loads
,”
J. Sound Vib.
,
332
(
9
), pp.
2253
2283
.
16.
Hulme
,
C.
,
Fiebiger
,
S.
, and
Szwedowicz
,
J.
,
2015
, “
Axial Compressor Blade Failure, Design Modification, and Its Validation
,”
ASME
Paper No. GT2015-43312.
17.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
,
Cochon
,
S.
, and
Garcin
,
F.
,
2014
, “
Redesign of a High-Pressure Compressor Blade Accounting for Nonlinear Structural Interactions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
022502
.
18.
Batailly
,
A.
, and
Millecamps
,
A.
,
2016
, “
Minimising Clearance Consumption: A Key Factor for the Design of Blades Robust to Rotor/Stator Interactions?
,”
ASME
Paper No. GT2016-56721.
19.
Pritchard
,
L. J.
,
1985
, “
An Eleven Parameter Axial Turbine Airfoil Geometry Model
,”
ASME
Paper No. 85-GT-219.
20.
Cho
,
S. Y.
,
Yoon
,
E. S.
, and
Choi
,
B. S.
,
2002
, “
A Study on an Axial-Type 2-D Turbine Blade Shape for Reducing the Blade Profile Loss
,”
KSME Int. J.
,
16
(
8
), pp.
1154
1164
.
21.
Ronald
,
H. A.
,
2003
, “
Axial-Flow Compressor Blade Profiles
,”
Axial-Flow Compressors
, American Society of Mechanical Engineers, New York, Chap. 4.
22.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Design and Overall Performance of Four Highly Loaded, High-Speed Inlet Stages for an Advanced High-Pressure Ratio Core Compressor
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-TP-1337
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780025165.pdf
23.
Steinert
,
W.
,
Eisenberg
,
B.
, and
Starken
,
H.
,
1991
, “
Design and Testing of a Controlled Diffusion Airfoil Cascade for Industrial Axial Flow Compressor Application
,”
ASME J. Turbomach.
,
113
(
4
), pp.
583
590
.
24.
Denton
,
J. D.
, and
Xu
,
L.
,
2002
, “
The Effects of Lean and Sweep on Transonic Fan Performance
,”
ASME
Paper No. GT2002-30327.
25.
Abramson
,
M. A.
,
Audet
,
C.
,
Couture
,
G.
,
Dennis
,
J. E.
, Jr.
,
Le Digabel
,
S.
, and
Tribes
,
C.
, “
The NOMAD Project
,” accessed Feb. 18, 2019, https://www.gerad.ca/nomad/.
26.
Abramson
,
M. A.
,
Audet
,
C.
,
Dennis
,
J. E.
, and
Digabel
,
S. L.
,
2009
, “
OrthoMADS: A Deterministic MADS Instance With Orthogonal Directions
,”
SIAM J. Optim.
,
20
(
2
), pp.
948
966
.
27.
Puri
,
R. S.
, and
Morrey
,
D.
,
2011
, “
A Krylov–Arnoldi Reduced Order Modelling Framework for Efficient, Fully Coupled, Structural–Acoustic Optimization
,”
Struct. Multidiscip. Optim.
,
43
(
4
), pp.
495
517
.
28.
Marwaha
,
G.
, and
Kokkolaras
,
M.
,
2015
, “
System-of-Systems Approach to Air Transportation Design Using Nested Optimization and Direct Search
,”
Struct. Multidiscip. Optim.
,
51
(
4
), pp.
885
901
.
29.
Ribes
,
A.
, and
Caremoli
,
C.
,
2007
, “
Salomé Platform Component Model for Numerical Simulation
,” 31st Annual International Computer Software and Applications Conference, Beijing, China, pp.
553
564
.
30.
Bogdonoff
,
S. M.
, and
Bogdonoff
,
H. E.
,
1945
, “
Blade Design Data for Axial-Flow Fan and Compressors
,” National Advisory Committee for Aeronautics, Washington, DC, Report No. ACR No. L5 F07a.
31.
Denton
,
J.
,
1997
, “
Lessons From Rotor 37
,”
J. Therm. Sci.
,
6
(
1
), pp.
1
13
.
32.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
, and
Garcin
,
F.
,
2012
, “
Numerical-Experimental Comparison in the Simulation of Rotor/Stator Interaction Through Blade-Tip/Abradable Coating Contact
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082504
.
33.
Legrand
,
M.
,
Batailly
,
A.
, and
Pierre
,
C.
,
2012
, “
Numerical Investigation of Abradable Coating Removal in Aircraft Engines Through Plastic Constitutive Law
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011010
.
34.
Millecamps
,
A.
,
Brunel
,
J.-F.
,
Dufrenoy
,
P.
,
Garcin
,
F.
, and
Nucci
,
M.
,
2009
, “
Influence of Thermal Effects During Blade-Casing Contact Experiments
,”
ASME
Paper No. DETC2009-86842.
35.
Benini
,
E.
, and
Biollo
,
R.
,
2007
, “
Aerodynamics of Swept and Leaned Transonic Compressor-Rotors
,”
Appl. Energy
,
84
(
10
), pp.
1012
1027
.
You do not currently have access to this content.