An experimental study is conducted to understand the mean and instantaneous behavior of the swirling flow issued from a triple swirler influenced by a single critical geometrical parameter, termed as the passage length. The investigated geometrical parameter defines the interaction point of the inner axial swirlers with the outer radial swirler, which consequently defines the primary air–fuel mixture characteristics and the resultant combustion state. Experiments were performed under cold flow conditions, and planar particle image velocimetry was employed to measure the velocity field. The mean flow pattern exhibited significant differences in terms of the swirl-jet width and angle and altered the number of stagnation points on the swirler axis. When the passage length was reduced to half, two stagnation points appeared on the swirler axis due to an initially developed smaller recirculation zone at the swirler mouth. Also, the turbulent activity at the vicinity of the swirler increased with as the passage length reduced. Investigations on the relocation of the second stagnation point on the axis through an arbitrary window revealed identical standard deviation in x and y directions. The energetic coherent structures extracted from the proper orthogonal decomposition also identified major differences in terms of the spatial distribution of the modes and their corresponding energy levels. The experimental results indicated that if the passage length is altered, the number of stagnation points on the swirler axis increases, and a breakdown of both the bubble and cone vortex may appear at the same time as different energy levels.

References

References
1.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Tunbridge Wells, UK
.
2.
Vashahi
,
F.
,
Lee
,
S.
, and
Lee
,
J.
,
2016
, “
Experimental Analysis of the Swirling Flow in a Model Rectangular Gas Turbine Combustor
,”
Exp. Therm. Fluid Sci.
,
76
, pp.
287
295
.
3.
Lucca-Negro
,
O.
, and
O'Doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
,
27
(
4
), pp.
431
481
.
4.
Oberleithner
,
K.
,
Paschereit
,
C. O.
,
Seele
,
R.
, and
Wygnanski
,
I.
,
2012
, “
Formation of Turbulent Vortex Breakdown: Intermittency, Criticality, and Global Instability
,”
AIAA J.
,
50
(
7
), pp.
1437
1452
.
5.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.
6.
Huang
,
Y.
, and
Yang
,
V.
,
2004
, “
Bifurcation of Flame Structure in a Lean-Premixed Swirl-Stabilized Combustor: Transition From Stable to Unstable Flame
,”
Combust. Flame
,
136
(
3
), pp.
383
389
.
7.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.
8.
Stohr
,
M.
,
Boxx
,
I.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2012
, “
Experimental Study of Vortex-Flame Interaction in a Gas Turbine Model Combustor
,”
Combust. Flame
,
159
(
8
), pp.
2636
2649
.
9.
,
B. D.
,
Schuller
,
T.
,
,
D. D.
, and
Candel
,
B.
,
2003
, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Propul. Power
,
19
(
5
), pp.
722
734
.
10.
Mongia
,
H. C.
,
Held
,
T. J.
,
Hsiao
,
G. C.
, and
Pandalai
,
R. P.
,
2003
, “
Challenges and Progress in Controlling Dynamics in Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
822
829
.
11.
Arndt
,
C. M.
,
Severin
,
M.
,
Dem
,
C.
,
Stohr
,
M.
,
Steinberg
,
A. M.
, and
Meier
,
W.
,
2015
, “
Experimental Analysis of Thermo-Acoustic Instabilities in a Generic Gas Turbine Combustor by Phase-Correlated PIV, Chemiluminescence, and Laser Raman Scattering Measurements
,”
Exp. Fluids
,
56
(
4
), p.
69
.
12.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
,
New York
.
13.
Meier
,
W.
,
Boxx
,
I.
,
Stohr
,
M.
, and
Carter
,
C. D.
,
2010
, “
Laser-Based Investigations in Gas Turbine Model Combustors
,”
Exp. Fluids
,
49
(
4
), pp.
865
882
.
14.
Oberleithner
,
K.
,
Schimek
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Shear Flow Instabilities in Swirl-Stabilized Combustors and Their Impact on the Amplitude Dependent Flame Response: A Linear Stability Analysis
,”
Combust. Flame
,
162
(
1
), pp.
86
99
.
15.
Oberleithner
,
K.
,
Stöhr
,
M.
,
Im
,
S. H.
,
Arndt
,
C. M.
, and
Steinberg
,
A. M.
,
2015
, “
Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis
,”
Combust. Flame
,
162
(
8
), pp.
3100
3114
.
16.
Stohr
,
M.
,
Sadanandan
,
R.
, and
Meier
,
W.
,
2011
, “
Phase-Resolved Characterization of Vortex–Flame Interaction in a Turbulent Swirl Flame
,”
Exp. Fluids
,
51
(
4
), pp.
1153
1167
.
17.
Chterev
,
I.
,
Rock
,
N.
,
Ek
,
H.
,
Emerson
,
B.
,
Seitzman
,
J.
,
Jiang
,
N.
,
Roy
,
S.
,
Lee
,
T.
,
Gord
,
J.
, and
Lieuwen
,
T.
,
2017
, “
Simultaneous Imaging of Fuel, OH, and Three Component Velocity Fields in High Pressure, Liquid Fueled, Swirl Stabilized Flames at 5 kHz
,”
Combust. Flame
,
186
, pp.
150
165
.
18.
Ogus
,
G.
,
Baelmans
,
M.
, and
Vanierschot
,
M.
,
2016
, “
On the Flow Structures and Hysteresis of Laminar Swirling Jets
,”
Phys. Fluids
,
28
(
12
), p.
123604
.
19.
Wang
,
S.
,
Hsieh
,
S.-Y.
, and
Yang
,
V.
,
2005
, “
Unsteady Flow Evolution in Swirl Injector With Radial Entry. I. Stationary Conditions
,”
Phys. Fluids
,
17
(
4
), p.
045106
.
20.
Iudiciani
,
P.
,
Hosseini
,
S. M.
,
Zoltan-Szasz
,
R.
,
Duwig
,
C.
,
Fuchs
,
L.
,
Collin
,
R.
,
Lantz
,
A.
,
Alden
,
M.
, and
Gutmark
,
E.
,
2009
, “
Characterization of a Multi-Swirler Fuel Injector Using Simultaneous Laser Based Planar Measurements of Reaction Zone, Flow Field, and Fuel Distribution
,”
ASME
Paper No. GT2009-60278.
21.
Dhanuka
,
S. K.
,
2008
, “
An Experimental Study of the Stable and Unstable Operation of an LLP Gas Turbine Combustor
,”
Ph.D. thesis
, Horace H. Rackham School of Graduate Studies, University of Michigan, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/61715
22.
Dhanuka
,
S. K.
,
Temme
,
J. E.
, and
Driscoll
,
J.
,
2011
, “
Unsteady Aspects of Lean Premixed Prevaporized Gas Turbine Combustors: Flame-Flame Interactions
,”
J. Propul. Power
,
27
(
3
), pp.
631
641
.
23.
Vashahi
,
F.
, and
Lee
,
J.
,
2018
, “
On the Emerging Flow From a Dual-Axial Counter-Rotating Swirler; LES Simulation and Spectral Transition
,”
Appl. Therm. Eng.
,
129
, pp.
646
656
.
24.
Singh
,
K. K.
,
Mongeau
,
L.
,
Frankel
,
S. H.
, and
Gore
,
J. P.
,
2007
, “
Effect of Co- and Counterswirl on Noise From Swirling Flows and Flames
,”
AIAA J.
,
45
(
3
), pp.
651
661
.
25.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.
26.
Mellor
,
A. M.
,
1990
,
Design of Modern Turbine Combustors
,
Academic Press
,
London
.
27.
Markovich
,
D. M.
,
Abdurakipov
,
S. S.
,
Chikishev
,
L. M.
,
Dulin
,
V. M.
, and
Hanjalić
,
K.
,
2014
, “
Comparative Analysis of Low- and High-Swirl Confined Flames and Jets by Proper Orthogonal and Dynamic Mode Decompositions
,”
Phys. Fluids
,
26
(
6
), p.
065109
.
28.
Durox
,
D.
,
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Morenton
,
P.
,
Viallon
,
M.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Flame Dynamics of a Variable Swirl Number System and Instability Control
,”
Combust. Flame
,
160
(
9
), pp.
1729
1742
.
29.
Lieuwen
,
T.
, and
Zinn
,
B. T.
,
1998
, “
The Role of Equivalence Ratio Oscillations in Driving Combustion Instabilities in Low NOx Gas Turbines
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
1809
1816
.
30.
Villalva Gomez
,
R.
,
Perelstein
,
Y.
, and
Gutmark
,
E.
,
2010
, “
Flame-Vortex Breakdown Interaction in Stable and Unstable Combustion
,”
AIAA
Paper No. 2010-6708.
31.
Mongia
,
H.
,
2003
, “
TAPS: A Fourth Generation Propulsion Combustor Technology for Low Emissions
,”
AIAA
Paper No. 2003-2657.
32.
Stickles
,
R.
, and
Barrett
,
J.
,
2013
, “
TAPS II Combustor, Continuous Lower Energy, Emissions and Noise (CLEEN) Program
,” GE Aviation, Cambridge, MA, Final Report 1, Document No. DTFAWA-10-C-00046.
33.
Vashahi
,
F.
,
Lee
,
S.
, and
Lee
,
J.
,
2017
, “
Experimental and Computational Analysis of the Swirling Flow Generated by an Axial Counter-Rotating Swirler in a Rectangular Model Chamber Using Water Test Rig
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
081501
.
34.
Vashahi
,
F.
,
Baek
,
B. J.
, and
Lee
,
J.
,
2017
, “
An Experimental and LES Comparison of Water- and Air-Based Swirling Flow Test Rigs in Vertical and Horizontal Configurations
,”
J. Mech. Sci. Technol.
,
31
(
7
), pp.
3285
3295
.
35.
Vashahi
,
F.
,
Rezaei
,
S.
, and
Lee
,
J.
,
2018
, “
Unsteady Aspects of Multi-Interacting Swirlers Using POD Analysis
,”
ASME
Paper No. GT2018-76239.
36.
Sciacchitano
,
A.
, and
Wieneke
,
B.
,
2016
, “
PIV Uncertainty Propagation
,”
Meas. Sci. Technol.
,
27
(
8
), p.
084006
.
37.
Billant
,
P.
,
Chomaz
,
J.-M.
, and
Huerre
,
P.
,
1998
, “
Experimental Study of Vortex Breakdown in Swirling Jets
,”
J. Fluid Mech.
,
376
, pp.
183
219
.
38.
Malanoski
,
M.
,
Aguilar
,
M.
,
O'Connor
,
J.
,
Shin
,
D.
,
Noble
,
B.
, and
Lieuwen
,
T.
,
2012
, “
Flame Leading Edge and Flow Dynamics in a Swirling, Lifted Flame
,”
ASME
Paper No. GT2012-68256.
39.
Zhang
,
Q.
,
Shanbhogue
,
S. J.
,
Shreekrishna
,
Lieuwen
,
T.
, and
O'Connor
,
J.
,
2011
, “
Strain Characteristics Near the Flame Attachment Point in a Swirling Flow
,”
Combust. Sci. Technol.
,
183
(
7
), pp.
665
685
.
40.
Chterev
,
I.
,
Sundararajan
,
G.
,
Emerson
,
B.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2017
, “
Precession Effects on the Relationship Between Time-Averaged and Instantaneous Reacting Flow Characteristics
,”
Combust. Sci. Technol.
,
189
(
2
), pp.
248
265
.
41.
Terhaar
,
S.
,
2015
, “
Identification and Modeling of Coherent Structures in Swirl Stabilized Combustors at Dry and Steam Diluted Conditions
,”
Ph.D. thesis
, Fakultät V Verkehrs- und Maschinensysteme, Technische Universität Berlin, Berlin.https://depositonce.tu-berlin.de/handle/11303/4658
42.
Terhaar
,
S.
,
Reichel
,
T. G.
,
Schrödinger
,
C.
,
Rukes
,
L.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2014
, “
Vortex Breakdown Types and Global Modes in Swirling Combustor Flows With Axial Injection
,”
J. Propul. Power
,
31
(
1
), pp.
219
229
.
43.
Gomez-Ramirez
,
D.
,
Ekkad
,
S. V.
,
Moon
,
H.-K.
,
Kim
,
Y.
, and
Srinivasan
,
R.
,
2017
, “
Isothermal Coherent Structures and Turbulent Flow Produced by a Gas Turbine Combustor Lean Pre-Mixed Swirl Fuel Nozzle
,”
Exp. Therm. Fluid Sci.
,
81
, pp.
187
201
.
44.
Iudiciani
,
P.
,
Duwig
,
C.
,
Husseini
,
S. M.
,
Szasz
,
R. Z.
,
Fuchs
,
L.
, and
Gutmark
,
E. J.
,
2012
, “
Proper Orthogonal Decomposition for Experimental Investigation of Flame Instabilities
,”
AIAA J.
,
50
(
9
), pp.
1843
1854
.
45.
Paredes
,
P.
,
Theofilis
,
V.
,
Terhaar
,
S.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2015
, “
Global and Local Hydrodynamic Stability Analysis as a Tool for Combustor Dynamics Modeling
,”
ASME
Paper No. GTP-15-1320.
46.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T. M.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
,
55
(
12
), pp.
4013
4041
.
47.
Iudiciani
,
P.
,
Duwig
,
C.
,
Hosseini
,
S. M.
,
Szasz
,
R.
,
Fuchs
,
L.
, and
Gutmark
,
E.
,
2011
, “
LES Investigation and Sensitivity Analysis of the Flow Dynamics in a Gas Turbine Swirl Combustor
,”
AIAA
Paper No. 2011-65.
You do not currently have access to this content.