Steady Reynolds-averaged Navier--Stokes (RANS) simulations were performed to examine the ability of four turbulence models—realizable k–ε (k–ε), shear-stress transport (SST), Reynolds stress model with linear pressure strain (RSM-LPS), and stress-omega RSM (RSM-τω)—to predict the turbulent flow and heat transfer in a trapezoidal U-duct with and without a staggered array of pin fins. Results generated for the heat-transfer coefficient (HTC) were compared with experimental measurements. For the smooth U-duct, the maximum relative error in the averaged HTC in the up-leg is 2.5% for k–ε, SST, and RSM-τω and 9% for RSM-LPS. In the turn region, the maximum is 50% for k–ε and RSM-LPS, 14.5% for RSM-τω, and 29% for SST. In the down-leg, SST gave the best predictions and RSM-τω being a close second with maximum relative error less than 10%. The ability to predict the separated flow downstream of the turn dominated the performance of the models. For the U-duct with pin fins, SST and RSM-τω predicted the best, and k–ε predicted the least accurate HTCs. For k–ε, the maximum relative error is about 25%, whereas it is 15% for the SST and RSM-τω, and they occur in the turn. In the turn region, the staggered array of pin fins was found to behave like guide vanes in turning the flow. The pin fins also reduced the size of the separated region just after the turn.

References

References
1.
Tannehill
,
J. C.
,
Anderson
,
D. A.
, and
Pletcher
,
R. H.
,
1997
,
Computational Fluid Dynamics and Heat Transfer
,
2nd ed.
,
Taylor & Francis
,
Washington, DC
.
2.
Shih
,
T. I.-P.
, and
Sultanian
,
B.
,
2001
, “
Computations of Internal and Film Cooling
,”
Heat Transfer in Gas Turbines
,
B.
Sundén
, and
M.
Faghri
, eds.,
WIT Press
,
Ashurst, UK
, pp.
175
225
.
3.
Sparlart
,
P. R.
,
2000
, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
,
21
, pp.
252
263
.
4.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
5.
Wilcox
,
D. C.
,
2001
, “
Turbulence Modeling: An Overview
,”
AIAA
Paper No. 2001-0724
,
6.
Shih
,
T. I.-P.
, and
Durbin
,
P. A.
,
2014
, “
Modeling and Simulation of Turbine Cooling
,”
Turbine Aerodynamics, Heat Transfer, Materials, and Mechanics
(Progress in Astronautics and Aeronautics), Vol. 243,
T.
Shih
, and
V.
Yang
, eds.,
American Institute of Aeronautics and Astronautics
, Reston, VA, pp.
389
421
.
7.
Apsley
,
D.
, and
Leschziner
,
M.
,
2000
, “
Advanced Turbulence Modelling of Separated Flow in a Diffuser
,”
Flow, Turbulence and Combustion 63:81
,
Kluwer Academic Publishers
, Dordrecht, The Netherlands, pp.
81
112
.
8.
Wallin
,
S.
, and
Johansson
,
A. V.
,
2000
, “
An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows
,”
J. Fluid Mech.
,
403
, pp.
89
132
.
9.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Fourth International Symposium on Turbulence
, Heat and Mass Transfer, Antalya, Turkey, Oct. 12–17, pp.
625
632
.
10.
Patel
,
V. C.
,
Rodi
,
W.
, and
Scheuerer
,
G.
,
1985
, “
Turbulence Models for Near Wall and Low Reynolds-Number Flows: A Review
,”
AIAA J.
,
23
(
9
), pp.
1308
1319
.
11.
Sarkar
,
A.
, and
So
,
R. M. C.
,
1997
, “
A Critical Evaluation of Near-Wall Two-Equation Models Against Direct Numerical Simulation Data
,”
Int. J. Heat Fluid Flow
,
18
(
2
), pp.
197
208
.
12.
Acharya
,
S.
, and
Tyagi
,
M.
,
2005
, “
Large Eddy Simulations of Flow and Heat Transfer in Rotating Ribbed Duct Flows
,”
ASME J. Heat Transfer.
,
127
(
5
), pp.
486
498
.
13.
Sewell
,
E. A.
,
Tafti
,
D. K.
,
Graham
,
A. B.
, and
Thole
,
K. A.
,
2006
, “
Experimental Validation of Large Eddy Simulations of Flow and Heat Transfer in a Stationary Ribbed Duct
,”
Int. J. Heat Fluid Flow
,
27
(
2
), pp.
243
258
.
14.
Laskowski
,
G. M.
, and
Durbin
,
P. A.
,
2007
, “
Direct Numerical Simulations of Turbulent Flow Through a Stationary and Rotating Infinite Serpentine Passage
,”
Phys. Fluids
,
19
(
1
), p.
015101
.
15.
Guleren
,
K. M.
, and
Turan
,
A.
,
2007
, “
Validation of Large-Eddy Simulation of Strongly Curved Stationary and Rotating U-Duct Flows
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
909
921
.
16.
Tafti
,
D. K.
,
He
,
L.
, and
Nagendra
,
K.
,
2013
, “
Large Eddy Simulation for Predicting Turbulent Heat Transfer in Gas Turbines
,”
Philos. Trans. R. Soc., A
,
372
(
2022
), p.
20130322
.
17.
Ooi
,
A.
,
Iaccarino
,
G.
,
Durbin
,
P.
, and
Behnia
,
M.
,
2002
, “
Reynolds Averaged Simulation of Flow and Heat Transfer in Ribbed Ducts
,”
Int. J. Heat Fluid Flow
,
23
(
6
), pp.
750
757
.
18.
Durbin
,
P. A.
, and
Shih
,
T. I.-P.
,
2005
, “
An Overview of Turbulence Modeling
,”
Modelling and Simulation of Turbulent Heat Transfer, B. Sundén and M. Faghri, eds.
,
WIT Press
,
Ashurst, UK
, pp.
3
31
.
19.
Shih
,
T.-H.
,
Liou
,
W.
,
Shabbir
,
A.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
20.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
21.
Menter
,
F. R.
,
1993
, “
Zonal Two-Equation k-ω Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper No. 93-2906
,
22.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
DCW Industries, Inc
.,
La Canada, CA
.
23.
Lien
,
F. S.
, and
Leschziner
,
M. A.
,
1994
, “
Assessment of Turbulent-Transport Models Including Non-Linear RNG Eddy-Viscosity Formulation and Second-Moment Closure for Flow Over a Backward-facing Step
,”
Comput. Fluids
,
23
(
8
), pp.
983
1004
.
24.
Fu
,
S.
,
Launder
,
B. E.
, and
Leschziner
,
M. A.
,
1987
, “
Modeling Strongly Swirling Recirculating Jet Flow With Reynolds-Stress Transport Closures
,”
Sixth Symposium on Turbulent Shear Flows
, Toulouse, France, Sept. 7–9.
25.
Gibson
,
M. M.
, and
Launder
,
B. E.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
86
(
3
), pp.
491
511
.
26.
Chyu
,
M. K.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
,
1998
, “
Determination of Local Heat Transfer Coefficient Based on Bulk Mean Temperature Using a Transient Liquid Crystal Technique
,”
J. Exp. Therm. Fluid Sci.
,
18
(
2
), pp.
142
149
.
27.
Sathyanarayanan
,
S. K.
, and
Shih
,
T. I.-P.
,
2017
, “
Time-Accurate Conjugate Analysis of Transient Measurements of Heat-Transfer Coefficients
,”
AIAA J. Thermophys. Heat Transfer
,
31
(
3
), pp.
527
537
.
You do not currently have access to this content.