In this paper, an artificial neural network (ANN) is introduced in order to detect the occurrence of misfire in an internal combustion (IC) engine by analyzing the crankshaft angular velocity. This study presents three reliable misfire detection procedures. In the first two methods, the fault features are extracted using both time domain and frequency domain techniques, and a multilayer perceptron (MLP) serves as the pattern recognition tool for detecting the misfiring cylinder. In the third method, a one-dimensional (1D) convolutional neural network (CNN) that combines feature extraction capability and pattern recognition is adopted for misfire detection. The experimental data are obtained by setting a six in-line diesel engine with different cylinder misfiring to work under representative operating conditions. Finally, all three diagnostic methods achieved satisfactory results, and the 1D CNN achieved the best performance. The current study provides a novel way to detect misfiring in IC engines.

References

References
1.
Gao
,
Z.
,
Li
,
C.
,
Liu
,
B.
,
Huang
,
Z.
,
Eiji
,
T.
, and
Sadami
,
Y.
,
2015
, “
Detection of Engine Abnormal Combustion With Ion Current Method
,”
J. Xian Jiaotong Univ.
,
49
(
5
), pp.
1
6
.
2.
Chang
,
J.
,
Kim
,
M.
, and
Min
,
K.
,
2002
, “
Detection of Misfire and Knock in Spark Ignition Engines by Wavelet Transform of Engine Block Vibration Signals
,”
Meas. Sci. Technol.
,
13
(
7
), pp.
1108
1114
.
3.
Sharma
,
A.
,
Sugumaran
,
V.
, and
Devasenapati
,
S. B.
,
2014
, “
Misfire Detection in an IC Engine Using Vibration Signal and Decision Tree Algorithms
,”
Measurement
,
50
, pp.
370
380
.
4.
Williams
,
J.
,
1996
, “
An Overview of Misfiring Cylinder Engine Diagnostic Techniques Based on Crankshaft Angular Velocity Measurements
,”
SAE
Paper No. 960039.
5.
Chiatti
,
G.
,
Chiavola
,
O.
,
Palmieri
,
F.
, and
Piolo
,
A.
,
2015
, “
Diagnostic Methodology for Internal Combustion Diesel Engines Via Noise Radiation
,”
Energy Convers. Manage.
,
89
, pp.
34
42
.
6.
Connolly
,
F. T.
, and
Rizzoni
,
G.
,
1994
, “
Real Time Estimation of Engine Torque for the Detection of Engine Misfires
,”
ASME J. Dyn. Syst., Meas., Control
,
116
(
4
), pp.
675
686
.
7.
Kiencke
,
U.
,
1999
, “
Engine Misfire Detection
,”
Control Eng. Pract.
,
7
(
2
), pp.
203
208
.
8.
Plapp
,
G.
,
Klenk
,
M.
, and
Moser
,
W.
,
1990
, “
Methods of On-Board Misfire Detection
,”
SAE
Paper No. 900232.
9.
Klenk
,
M.
,
Moser
,
W.
,
Mueller
,
W.
, and
Wimmer
,
W.
,
1993
, “
Misfire Detection by Evaluating Crankshaft Speed—A Means to Comply With OBD II
,”
SAE
Paper No. 930399.
10.
Taraza
,
D.
,
Henein
,
N. A.
, and
Bryzik
,
W.
,
2001
, “
The Frequency Analysis of the Crankshaft's Speed Variation: A Reliable Tool for Diesel Engine Diagnosis
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
428
432
.
11.
Geveci
,
M.
,
Osburn
,
A. W.
, and
Franchek
,
M. A.
,
2005
, “
An Investigation of Crankshaft Oscillations for Cylinder Health Diagnostics
,”
Mech. Syst. Signal Process.
,
19
(
5
), pp.
1107
1134
.
12.
Osburn
,
A. W.
,
Kostek
,
T. M.
, and
Franchek
,
M. A.
,
2006
, “
Residual Generation and Statistical Pattern Recognition for Engine Misfire Diagnostics
,”
Mech. Syst. Signal Process.
,
20
(
8
), pp.
2232
2258
.
13.
Cavina
,
N.
,
Cipolla
,
G.
,
Marcigliano
,
F.
,
Moro
,
D.
, and
Poggio
,
L.
,
2006
, “
A Methodology for Increasing the Signal to Noise Ratio for the Misfire Detection at High Speed in a High Performance Engine
,”
Control Eng. Pract.
,
14
(
3
), pp.
243
250
.
14.
Hu
,
C.
,
Li
,
A.
, and
Zhao
,
X.
,
2011
, “
Multivariate Statistical Analysis Strategy for Multiple Misfire Detection in Internal Combustion Engines
,”
Mech. Syst. Signal Process.
,
25
(
2
), pp.
694
703
.
15.
Helm
,
S.
,
Kozek
,
M.
, and
Jakubek
,
S.
,
2012
, “
Combustion Torque Estimation and Misfire Detection for Calibration of Combustion Engines by Parametric Kalman Filtering
,”
IEEE Trans. Ind. Electron.
,
59
(
11
), pp.
4326
4337
.
16.
Liu
,
B.
,
Zhao
,
C.
,
Zhang
,
F.
,
Cui
,
T.
, and
Su
,
J.
,
2013
, “
Misfire Detection of a Turbocharged Diesel Engine by Using Artificial Neural Networks
,”
Appl. Therm. Eng.
,
55
(
1–2
), pp.
26
32
.
17.
Jung
,
D.
,
Eriksson
,
L.
,
Frisk
,
E.
, and
Krysander
,
M.
,
2015
, “
Development of Misfire Detection Algorithm Using Quantitative FDI Performance Analysis
,”
Control Eng. Pract.
,
34
, pp.
49
60
.
18.
Boudaghi
,
M.
,
Shahbakhti
,
M.
, and
Jazayeri
,
S. A.
,
2015
, “
Misfire Detection of Spark Ignition Engines Using a New Technique Based on Mean Output Power
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
091509
.
19.
Ma
,
X.
,
Xia
,
Z.
,
Wu
,
H.
, and
Huang
,
X.
,
2015
, “
Combined Frequency Domain Analysis and Fuzzy Logic for Engine Misfire Diagnosis
,”
SAE
Paper No. 2015-01-0207.
20.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
21.
Ince
,
T.
,
Kiranyaz
,
S.
,
Eren
,
L.
,
Askar
,
M.
, and
Gabbouj
,
M.
,
2016
, “
Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks
,”
IEEE Trans. Ind. Electron.
,
63
(
11
), pp.
7067
7075
.
22.
Kiranyaz
,
S.
,
Ince
,
T.
, and
Gabbouj
,
M.
,
2016
, “
Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks
,”
IEEE Trans. Biomed. Eng.
,
63
(
3
), pp.
664
675
.
23.
Abdeljaber
,
O.
,
Avci
,
O.
,
Kiranyaz
,
S.
,
Gabbouj
,
M.
, and
Inman
,
D. J.
,
2017
, “
Real-Time Vibration-Based Structural Damage Detection Using One-Dimensional Convolutional Neural Networks
,”
J. Sound Vib.
,
388
, pp.
154
170
.
24.
Nielsen
,
M. A.
,
2015
,
Neural Networks and Deep Learning
,
Determination Press
.
25.
LeCun
,
Y.
,
Bottou
,
L.
,
Bengio
,
Y.
, and
Haffner
,
P.
,
1998
, “
Gradient-Based Learning Applied to Document Recognition
,”
Proc. IEEE
,
86
(
11
), pp.
2278
2324
.
26.
Chen
,
Z.
,
1987
,
Chuanpo Tuijinzhouxi Zhendong
,
Shanghai Jiaotong University Press
, Shanghai, China, pp.
37
116
.
27.
Chen
,
J.
, and
Randall
,
R. B.
,
2015
, “
Improved Automated Diagnosis of Misfire in Internal Combustion Engines Based on Simulation Models
,”
Mech. Syst. Signal Process.
,
64–65
, pp.
58
83
.
28.
Xiao
,
X. Y.
,
Xiang
,
Y.
,
Qian
,
S. C.
,
Li
,
R.
, and
Zhou
,
Q.
,
2014
, “
The Application of the Multi-Harmonic Phase Method to Fault Diagnosis of Diesel Engines
,”
J. Harbin Eng. Univ.
,
35
(
8
), pp.
945
960
.
29.
Theodoridis
,
S.
, and
Koutroumbas
,
K.
,
2008
,
Pattern Recognition
,
4th ed.
,
Academic Press
, San Diego, CA, pp.
1
248
.
30.
Sheela
,
K. G.
, and
Deepa
,
S. N.
,
2013
, “
Review on Methods to Fix Number of Hidden Neurons in Neural Networks
,”
Math. Probl. Eng.
,
2013
, p.
425740
.
31.
Mirchandani
,
G.
, and
Cao
,
W.
,
1989
, “
On Hidden Nodes for Neural Nets
,”
IEEE Trans. Circuits Syst.
,
36
(
5
), pp.
661
664
.
32.
Reed
,
R.
,
1993
, “
Pruning Algorithms–A Survey
,”
IEEE Trans. Neural Networks
,
4
(
5
), pp.
740
747
.
33.
Fahlman
,
S. E.
, and
Lebiere
,
C.
,
1990
, “
The Cascade-Correlation Learning Architecture
,”
Advances in Neural Information Processing Systems
,
Denver, CO
,
Nov. 26–29
, pp.
524
532
.
34.
Shibata
,
K.
, and
Ikeda
,
Y.
,
2009
, “
Effect of Number of Hidden Neurons on Learning in Large-Scale Layered Neural Networks
,”
ICROS-SICE
International Joint Conference, Fukuoka, Japan, Aug. 18–21, pp.
5008
5013
.https://ieeexplore.ieee.org/document/5334631
35.
Demuth
,
H.
,
Beale
,
M.
, and
Hagan
,
M.
,
2009
,
Neural Network Toolbox™ User's Guide
,
The MathWorks
, Natick, MA, pp.
5
50
.
36.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1986
, “
Learning Representations by Back-Propagating Errors
,”
Nature
,
323
(
6088
), pp.
533
536
.
You do not currently have access to this content.