A successful ignition in an annular multi-injector combustor follows a sequence of steps. The first injector is ignited; two arch-shaped flame branches nearly perpendicular to the combustor backplane form; they propagate, igniting each injection unit; they merge. In this paper, characterization of the propagation phase is performed in an annular combustor with spray flames fed with liquid n-hepane. The velocity and the direction of the arch-like flame branch are investigated. Near the backplane, the flame is moving in a purely azimuthal direction. Higher up in the chamber, it is also moving in the axial direction due to the volumetric expansion of the burnt gases. Time-resolved particle image velocimetry (PIV) measurements are used to investigate the evaporating fuel droplets dynamics. A new result is that, during the light-round, the incoming flame front pushes the fuel droplets in the azimuthal direction well before its leading point. This leads to a decrease in the local droplet concentration and local mixture composition over not yet lit injectors. For the first time, the behavior of an individual injector ignited by the passing flame front is examined. The swirling flame structure formed by each injection unit evolves in time. From the ignition of an individual injector to the stabilization of its flame in its final shape, approximately 50 ms elapse. After the passage of the traveling flame, the newly ignited flame flashbacks into the injector during a few milliseconds, for example, 5 ms for the conditions that are tested. This could be detrimental to the service life of the unit. Then, the flame exits from the injection unit, and its external branch detaches under the action of cooled burnt gases in the outer recirculation zone (ORZ).

References

References
1.
Prieur
,
K.
,
Durox
,
D.
,
Beaunier
,
J.
,
Schuller
,
T.
, and
Candel
,
S.
,
2017
, “
Ignition Dynamics in an Annular Combustor for Liquid Spray and Premixed Gaseous Injection
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3717
3724
.
2.
Cordier
,
M.
,
Vandel
,
A.
,
Renou
,
B.
,
Cabot
,
G.
,
Boukhalfa
,
M. A.
,
Esclapez
,
L.
,
Barre
,
D.
,
Riber
,
E.
,
Cuenot
,
B.
, and
Gicquel
,
L.
,
2013
, “
Experimental and Numerical Analysis of an Ignition Sequence in a Multiple-Injectors Burner
,”
ASME
Paper No. GT2013-94681.
3.
Barre
,
D.
,
Esclapez
,
L.
,
Cordier
,
M.
,
Riber
,
E.
,
Cuenot
,
B.
,
Staffelbach
,
G.
,
Renou
,
B.
,
Vandel
,
A.
,
Gicquel
,
L. Y. M.
, and
Cabot
,
G.
,
2014
, “
Flame Propagation in Aeronautical Swirled Multi-Burners: Experimental and Numerical Investigation
,”
Combust. Flame
,
161
, pp.
2387
2405
.
4.
Bach
,
E.
,
Kariuki
,
J.
,
Dawson
,
J. R.
,
Mastorakos
,
E.
, and
Bauer
,
H.-J.
,
2013
, “
Spark Ignition of Single Bluff-Body Premixed Spark Ignition of Single Bluff-Body Premixed
,”
AIAA
Paper No. 2013-1182.
5.
Bourgouin
,
J. F.
,
Durox
,
D.
,
Schuller
,
T.
,
Beaunier
,
J.
, and
Candel
,
S.
,
2013
, “
Ignition Dynamics of an Annular Combustor Equipped With Multiple Swirling Injectors
,”
Combust. Flame
,
160
(
8
), pp.
1398
1413
.
6.
Machover
,
E.
, and
Mastorakos
,
E.
,
2015
, “
Spark Ignition of Annular Non-Premixed Combustors
,”
Exp. Therm. Fluid Sci.
,
73
, pp.
64
70
.
7.
Boileau
,
M.
,
Staffelbach
,
G.
,
Cuenot
,
B.
,
Poinsot
,
T.
, and
Berat
,
C.
,
2008
, “
LES of an Ignition Sequence in a Gas Turbine Engine
,”
Combust. Flame
,
154
(
1–2
), pp.
2
22
.
8.
Philip
,
M.
,
Boileau
,
M.
,
Vicquelin
,
R.
,
Schmitt
,
T.
,
Durox
,
D.
,
Bourgouin
,
J. F.
, and
Candel
,
S.
,
2014
, “
Ignition Sequence in a Multi-Injector Combustor
,”
Phys. Fluids
,
26
(
9
), p.
091106
.
9.
Philip
,
M.
,
Boileau
,
M.
,
Vicquelin
,
R.
,
Riber
,
E.
,
Schmitt
,
T.
,
Cuenot
,
B.
,
Durox
,
D.
, and
Candel
,
S.
,
2015
, “
Large Eddy Simulation of the Ignition Sequence of an Annular Multiple Injector Combustor
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3159
3166
.
10.
Philip
,
M.
,
Boileau
,
M.
,
Vicquelin
,
R.
,
Schmitt
,
T.
,
Durox
,
D.
,
Bourgouin
,
J. F.
, and
Candel
,
S.
,
2014
, “
Simulation of the Ignition Process in an Annular Multiple-Injector Combustor and Comparison With Experiments
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031501
.
11.
Lancien
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Candel
,
S.
, and
Vicquelin
,
R.
,
2017
, “
Large Eddy Simulation of Light-Round in an Annular Combustor With Liquid Spray Injection and Comparison With Experiments
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
021504
.
12.
Machover
,
E.
, and
Mastorakos
,
E.
,
2017
, “
Numerical Investigation of the Stochastic Behavior of Light-Round in Annular Non-Premixed Combustors
,”
Combust. Sci. Technol.
,
189
(
9
), pp.
1467
1485
.
13.
Thielicke
,
W.
, and
Stamhuis
,
E.
,
2014
, “
PIVlab–Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB
,”
J. Open Res. Software
,
2
(
1
), p. e30.
14.
Mirat
,
C.
,
Durox
,
D.
, and
Schuller
,
T.
,
2014
, “
Analysis of the Spray and Transfer Function of Swirling Spray Flames From a Multi-Jet Steam Assisted Liquid Fuel Injector
,”
ASME
Paper No. GT2014-25111.
15.
Mirat
,
C.
,
Durox
,
D.
, and
Schuller
,
T.
,
2015
, “
Stability Analysis of a Swirl Spray Combustor Based on Flame Describing Function
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3291
3298
.
16.
Prieur
,
K.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2017
, “
Strong Azimuthal Combustion Instabilities in a Spray Annular Chamber With Intermittent Partial Blow-Off
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
031503
.
17.
Strahle
,
W. C.
,
1978
, “
Combustion Noise
,”
Prog. Energy Combust. Sci.
,
4
(
3
), pp.
157
176
.
18.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
Self-Induced Combustion Oscillations of Laminar Premixed Flames Stabilized on Annular Burners
,”
Combust. Flame
,
135
(
4
), pp.
525
537
.
19.
Candel
,
S.
,
Durox
,
D.
, and
Schuller
,
T.
,
2004
, “
Flame Interactions as a Source of Noise and Combustion Instabilities
,”
AIAA
Paper No. 2004-2928.
20.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2007
, “
Passive Control of Combustion Instabilities Involving Premixed Flames Anchored on Perforated Plates
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1283
1290
.
21.
Guiberti
,
T.
,
Durox
,
D.
,
Scouflaire
,
P.
, and
Schuller
,
T.
,
2015
, “
Impact of Heat Loss and Hydrogen Enrichment on the Shape of Confined Swirling Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1385
1392
.
22.
Maio
,
G.
,
Cailler
,
M.
,
Mercier
,
R.
, and
Fiorina
,
B.
,
2018
, “
Virtual Chemistry for Temperature and CO Prediction in LES of Non-Adiabatic Turbulent Flames
,”
Proc. Combust. Inst.
(in press).
23.
Guiberti
,
T.
,
Durox
,
D.
,
Zimmer
,
L.
, and
Schuller
,
T.
,
2015
, “
Analysis of Topology Transitions of Swirl Flames Interacting With the Combustor Side Wall
,”
Combust. Flame
,
162
(
11
), pp.
4342
4357
.
You do not currently have access to this content.