As-manufactured rotors behave quite differently than nominal as-designed rotors due to small geometric and material property deviations in the rotor, referred to as mistuning. The mistuning of a 20 bladed, integrally bladed rotor (IBR) will be evaluated via analytical methods, benchtop testing, and using a rotating compressor research facility. Analytical methods consist of the development of an as-manufactured model based on geometry measurements from a high fidelity optical scanning system. Benchtop testing of the IBR is done using a traveling wave excitation (TWE) system that simulates engine order excitation in stationary bladed disks for the purpose of determining potentially high responding blades due to mistuning. The compressor research facility utilizes blade tip timing to measure the blade vibration of the IBR. The resonant response of the IBR at various modes and harmonic excitations is investigated. A comprehensive mistuning and force amplification comparison between the as-manufactured model, TWE, and the compressor rig is performed. Mistuning of each method is evaluated using three different methods. First, the tuned absorber factor (TAF), which is a metric to determine potential high responding blades, is determined for each system. Next, mistuning is analyzed by isolating individual blades both experimentally on the bench and analytically to determine the mistuning patterns. Lastly, the mistuning determined by each system will be evaluated using a reduced-order model, namely the fundamental mistuning model identification (FMM ID). It will be shown that TAF shows variability between each method providing indications TAF may not be the best approach of force amplification predictions. Basic mistuning agreements exist when isolating blades both experimentally and analytically exhibiting as-manufactured models are capable of representing full experiments. System ID methods provide a basic agreement between both the mistuning pattern and the mistuning amplification for all three methods analyzed. This ultimately shows the importance and the ability to use as-manufactured models to help increase detailed understanding of IBR's.

References

References
1.
Castanier
,
M.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Current Status and Emerging Directions
,”
J. Propul. Power
,
22
(
2
), pp.
384
396
.
2.
Hodges
,
C.
,
1982
, “
Confinement of Vibration by Structural Irregularity
,”
J. Sound Vib.
,
82
(
3
), pp.
411
424
.
3.
Heath
,
S.
,
Slater
,
T.
,
Mansfield
,
L.
, and
Loftus
,
P.
,
1997
, “
Turbomachinery Bade Tip Measurement Techniques
,” AGARD (Advisory Group for Aerospace Research and Development), Brussels, Belgium, Oct. 20–24, p. 32.
4.
Bartsch
,
T.
,
2000
, “
High Cycle Fatigue Science and Technology Program
,” Air Force Research Laboratory, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, Report No.
AFRL-PR-WP-TR-2000-2004
.https://apps.dtic.mil/docs/citations/ADA408071
5.
Cowles
,
B.
,
1996
, “
High Cycle Fatigue in Aircraft Gas Turbines—An Industry Perspective
,”
Int. J. Fract.
,
80
(
2–3
), pp.
147
163
.
6.
Nicholas
,
T.
,
1999
, “
Critical Issues in High Cycle Fatigue
,”
Int. J. Fract.
,
21
, pp.
221
231
.
7.
Beck
,
J.
,
Brown
,
J.
,
Slater
,
J.
, and
Cross
,
C.
,
2013
, “
Probabilistic Mistuning Assessment Using Nominal and Geometry Based Mistuning Methods
,”
ASME J. Turbomach.
,
135
(
5
), p.
051004
.
8.
Sinha
,
A.
,
Hall
,
B.
,
Cassenti
,
B.
, and
Hilbert
,
G.
, “
Vibratory Parameters of Blades From Coordinate Measurement Machine Data
,”
ASME J. Turbomach.
,
130
(
1
), p.
011013
.
9.
Kaszynski
,
A.
,
Beck
,
J.
, and
Brown
,
J.
,
2013
, “
Uncertainties of an Automated Optical 3D Geometry Measurement, Modeling, and Analysis Process for Mistuned Integrally Bladed Rotor Reverse Engineering
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102504
.
10.
Maywald
,
T.
,
Backhaus
,
T.
,
Schrape
,
S.
, and
Kuhhorn
,
A.
,
2017
, “
Geometric Model Update of Blisks and Its Experimental Validation for a Wide Frequency Range
,”
ASME
Paper No. GT2017-63446.
11.
Glaessgen
,
E.
, and
Stargel
,
D.
,
2012
, “
The Digital Twin Paradigm for Future Nasa and U.S. Air Force Vehicles
,”
AIAA
Paper No. 2012-1818
12.
Kaszynski
,
A.
, and
Brown
,
J.
,
2015
, “
Accurate Blade Tip Timing Limits Through Geometry Mistuning Modeling
,”
ASME
Paper No. GT2015-43192.
13.
Gillaugh
,
D.
,
Kaszynski
,
A.
,
Brown
,
J.
,
Johnston
,
D.
, and
Slater
,
J.
,
2017
, “
Accurate Strain Gage Limits Through Geometry Mistuning Modeling
,” In
AIAA
Paper No. 1401-1408.
14.
Schnell
,
R.
,
Lengyel-Kampmann
,
T.
, and
Nicke
,
E.
,
2014
, “
On the Impact of Geometric Variability on Fan Aerodynamic Performance, Unsteady Blade Row Interaction, and Its Mechanical Characteristics
,”
ASME J. Turbomach.
,
136
(
9
), p.
091005
.
15.
Clark
,
J.
,
Beck
,
J.
,
Kaszynski
,
A.
,
Still
,
A.
, and
Ni
,
R.
,
2017
, “
The Effect of Manufacturing Variations on Unsteady Interaction in a Transonic Turbine
,”
ASME
Paper No. GT2017-64075
.
16.
Feiner
,
D.
,
Griffin
,
J.
,
Jones
,
K.
,
Kenyon
,
J.
,
Mehmed
,
O.
, and
Kurkov
,
A.
,
2003
, “
System Identification of Mistuned Bladed Disks From Traveling Wave Response Measurements
,”
ASME
Paper No. DETC2003/VIB-48448.
17.
Feiner
,
D.
, and
Griffin
,
J.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
,
124
(
4
), pp.
597
605
.
18.
Holland
,
D.
,
Castanier
,
M.
,
Ceccio
,
S.
,
Epureanu
,
B.
, and
Filippi
,
S.
,
2010
, “
Testing and Calibration Procedures for Mistuning Identification and Traveling Wave Excitation of Blisks
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
042502
.
19.
Lim
,
S.
,
Bladh
,
R.
,
Castanier
,
M.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.
20.
Petrov
,
E.
,
Mare
,
L.
,
Hennings
,
H.
, and
Elliot
,
R.
,
2010
, “
Forced Response of Mistuned Bladed Disks in Gas Flow: A Comparative Study of Predictions and Full-Scale Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
132
(
5
), p.
052504
.
21.
Besem
,
F.
,
Kielb
,
R.
,
Galpin
,
P.
,
Zori
,
L.
, and
Key
,
N.
,
2016
, “
Mistuned Forced Response Predictions of an Embedded Rotor in a Multistage Compressor
,”
ASME J. Turbomach.
,
138
(
6
), p.
061003
.
22.
Besem
,
F.
,
Kielb
,
R.
, and
Key
,
N.
,
2016
, “
Forced Response Sensitivity of a Mistuned Rotor From on Embedded Compressor Stage
,”
ASME J. Turbomach.
,
138
(
3
), p.
031002
.
23.
Li
,
J.
,
Aye-Addo
,
N.
, III
,
N. K.
,
Mathews
,
D.
,
Key
,
N.
, and
Kielb
,
R.
,
2017
, “
Mistuned Higher Order Mode Forced Response of an Embedded Compressor Rotor—Part I: Steady and Unsteady Aerodynamics
,”
ASME
Paper No. GT2017-64633.
24.
Li
,
J.
,
Aye-Addo
,
N.
,
Kielb
,
R.
, and
Key
,
N.
,
2017
, “
Mistuned Higher Order Mode Forced Response of an Embedded Compressor Rotor—Part II: Steady and Unsteady Aerodynamics
,”
ASME
Paper No. GT2017-64647.
25.
Schoenenborn
,
H.
,
Grossmann
,
D.
,
Satzger
,
W.
, and
Zisik
,
H.
,
2009
, “
Determination of Blade-Alone Frequencies of a Blisk for Mistuning Analysis Based on Optical Measurements
,”
ASME
Paper No. GT2009-59148.
26.
Honisch
,
P.
,
Strehlau
,
U.
, and
Kuhhorn
,
A.
,
2012
, “
Modelling of Industrial Blade Integrated Disks (Blisks) With Regard to Mistuning
,” International Conference on Noise and Vibration Engineering, Leuven, Belgium, Sept. 17–19.
27.
de Cazenove
,
J.
,
Cogan
,
S.
, and
Mbaye
,
M.
,
2013
, “
Finite-Element Modelling of an Experimental Mistuned Bladed Disk and Experimental Validation
,”
ASME
Paper No. GT2013-95985.
28.
Nyssen
,
F.
, and
Golinval
,
M.
,
2015
, “
Experimental Modal Identification of Mistuning in an Academic Blisk and Comparison With the Blades Geometry Variations
,”
ASME
Paper No. GT2015-43436
.
29.
Kaszynski
,
A.
,
Beck
,
J.
, and
Brown
,
J.
,
2015
, “
Experimental Validation of an Optically Measured Digital Replica of a Geometrically Mistuned Rotor Using a System id Approach
,”
AIAA
Paper No. 2015-1371
.
30.
Hah
,
C.
,
Puterbaugh
,
S.
, and
Copenhaver
,
W.
,
1997
, “
Unsteady Aerodynamic Flow Phenomena in a Transonic Compressor Stage
,”
J. Propul. Power
,
13
(
3
), pp.
329
333
.
31.
Cox
,
G.
,
Palazotto
,
A.
,
Brown
,
J.
, and
George
,
T.
,
2014
, “
Traveling Wave Excitation: A Method to Produce Consistent Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
122502
.
32.
Jones
,
K.
, and
Cross
,
C.
,
2003
, “
Traveling Wave Excitation System for Bladed Disks
,”
J. Propul. Power
,
19
(
1
), pp.
135
141
.
33.
Fredrick
,
N.
, and
Hayes
,
B.
,
2010
,
Best Practice: Non-Contact Stress Measurement Blade Tip-Timing
, Arnold Engineering Development Complex (AEDC), Tennessee.
34.
Brajlih
,
T.
,
Tasic
,
T.
,
Drstvensek
,
I.
,
Valentan
,
B.
,
Hadzistevic
,
M.
,
Pogacar
,
V.
,
Balic
,
J.
, and
Acko
,
B.
,
2011
, “
Possibilities of Using Three-Dimensional Optical Scanning in Complex Geometrical Inspection
,”
Strojniski Vestnik J. Mech. Eng.
,
57
(
11
), pp.
826
833
.
35.
Beck
,
J.
,
Brown
,
J.
,
Runyon
,
B.
, and
Scott-Emuakpor
,
O.
,
2017
, “
Probabilistic Study of Integrally Bladed Rotor Blends Using Geometric Mistuning Models
,”
AIAA
Paper No. 2017-0860.
36.
Feiner
,
D.
, and
Griffin
,
J.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model—Part I: Theory
,”
ASME J. Turbomach.
,
126
(
1
), pp.
150
158
.
37.
Feiner
,
D.
, and
Griffin
,
J.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model—Part II: Application
,”
ASME J. Turbomach.
,
126
(
1
), pp.
159
165
.
38.
Hemberger
,
D.
,
Filsinger
,
D.
, and
Bauer
,
H.
,
2012
, “
Investigations on Maximum Amplitude Amplification Factor of Real Mistuned Bladed Structures
,”
ASME
Paper No. GT2012-68084.
You do not currently have access to this content.