In order to investigate the performance and emissions behavior of a high compression ratio compression ignition (CI) engine operating in partially premixed charge compression ignition (PPCI) mode, a series of experiments were conducted using a single-cylinder engine with a high-pressure rail fuel injection system. This included a moderately advanced direct injection strategy to attempt PPCI combustion under low load conditions by varying the injection timing between 25 deg and 35 deg before top dead center (BTDC) in steps of 2.5 deg. Furthermore, during experimentation the fuel injection pressure, engine speed, and engine torque were kept constant. Performance parameters and emissions were measured and analyzed using a zero-dimensional heat release model. Compared to the baseline conventional 12.5 deg BTDC injection, in-cylinder pressure and temperature were higher at advanced timings for all load conditions considered. Additionally, NOx, PM, CO, and total hydrocarbon (THC) were higher than conventional results at the 0.5 N·m load condition. While PM emissions were lower, and CO and THC emissions were comparable to conventional injection results at the 1.5 N·m load condition between 25 deg and 30 deg BTDC, NOx emissions were relatively high. Hence, there was limited success in beating the NOx-PM trade-off. Moreover, since the start of combustion (SOC) occurred BTDC, the resulting higher peak combustion pressures restricted the operating condition to lower loads. As a result, further investigation including exhaust gas recirculation (EGR) and/or variance in fuel cetane number (CN) is required to achieve PPCI in a high compression ratio CI engine.

References

References
1.
Gulia
,
S.
,
Nagendra
,
S. S. M.
,
Khare
,
M.
, and
Khanna
,
I.
,
2015
, “
Urban Air Quality Management—A Review
,”
Atmos. Pollut. Res.
,
6
(
2
), pp.
286
304
.
2.
Humphrey
,
J.
,
2003
, “
Globalization and Supply Chain Networks: The Auto Industry in Brazil and India
,”
Global Networks
,
3
(
2
), pp.
121
141
.
3.
Porter
,
M. E.
, and
Van der Linde
,
C.
,
1995
, “
Toward a New Conception of the Environment-Competitiveness Relationship
,”
J. Econ. Perspect.
,
9
(
4
), pp.
97
118
.
4.
Zhang
,
K.
, and
Batterman
,
S.
,
2013
, “
Air Pollution and Health Risks Due to Vehicle Traffic
,”
Sci. Total Environ.
,
450
, pp.
307
316
.
5.
Helmantel
,
A.
, and
Denbratt
,
I.
,
2004
, “
HCCI Operation of a Passenger Car Common Rail DI Diesel Engine With Early Injection of Conventional Diesel Fuel
,”
SAE
Paper No. 2004-01-0935
.
6.
Lechner
,
G.
,
Jacobs
,
T.
,
Chryssakis
,
C.
,
Assanis
,
D.
, and
Siewart
,
R.
,
2005
, “
Evaluation of a Narrow Spray Cone Angle, Advanced Injection Timing Strategy to Achieve Partially Premixed Compression Ignition Combustion in a Diesel Engine
,”
SAE
Paper No 2005-01-0167
.
7.
Kiplimo
,
R.
,
Tomita
,
E.
,
Kawahara
,
N.
, and
Yokobe
,
S.
,
2012
, “
Effects of Spray Impingement, Injection Parameters, and EGR on the Combustion and Emission Characteristics of a PCCI Diesel Engine
,”
Appl. Therm. Eng.
,
37
, pp.
165
175
.
8.
Kaneko
,
N.
,
Ando
,
H.
,
Ogawa
,
H.
, and
Miyamoto
,
N.
,
2002
, “
Expansion of the Operating Range With In-Cylinder Water Injection in a Premixed Charge Compression Ignition Engine
,”
SAE
Paper No. 2002-01-1743
.
9.
Stanglmaier
,
R. H.
, and
Roberts
,
C. E.
,
1999
, “
Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications
,”
SAE
Paper No. 1999-01-3682
.
10.
Iwabuchi
,
Y.
,
Kawai
,
K.
,
Shoji
,
T.
, and
Takeda
,
Y.
,
1999
, “
Trial of New Concept Diesel Combustion System—Premixed Compression-Ignited Combustion
,”
SAE
Paper No. 1999-01-0185
.
11.
Suzuki
,
H.
,
Koike
,
N.
, and
Odaka
,
M.
,
1998
, “
Combustion Control Method of Homogeneous Charge Diesel Engines
,”
SAE
Paper No.
980509.
12.
Boot
,
M.
,
Rijk
,
E.
,
Luijten
,
C.
,
Somers
,
B.
, and
Albrecht
,
B.
,
2010
, “
Spray Impingement in the Early Direct Injection Premixed Charge Compression Ignition Regime
,”
SAE
Paper No. 2010-01-1501
.
13.
Han
,
M.
,
Dennis
,
N. A.
, and
Stanislav
,
V. B.
,
2009
, “
Sources of Hydrocarbon Emissions From Low-temperature Premixed Compression Ignition Combustion From a Common Rail Direct Injection Diesel Engine
,”
Combust. Sci. Technol.
,
181
(
3
), pp.
496
517
.
14.
Nishijima
,
Y.
,
Asaumi
,
Y.
, and
Aoyagi
,
Y.
,
2002
, “
Impingement Spray System With Direct Water Injection for Premixed Lean Diesel Combustion Control
,”
SAE
Paper No. 2002-01-0109
.
15.
Nishijima
,
Y.
,
Asaumi
,
Y.
, and
Aoyagi
,
Y.
,
2001
, “
Premixed Lean Diesel Combustion (PREDIC) Using Impingement Spray System
,”
SAE
Paper No. 2001-01-1892
.
16.
Lee
,
J.-H.
,
Goto
,
S.
,
Tsurushima
,
T.
,
Miyamoto
,
T.
, and
Wakisaka
,
T.
,
2000
, “
Effects of Injection Conditions on Mixture Formation Process in a Premixed Compression Ignition Engine
,”
SAE
Paper No. 2000-01-1831
.
17.
Miyamoto
,
T.
,
Harada
,
A.
,
Sasaki
,
S.
,
Akagawa
,
H.
,
Tujimura
,
K.
, and
Hayashi
,
A. K.
,
1999
, “
A Computational Investigation of Premixed Lean Diesel Combustion—Characteristics of Fuel-Air Mixture Formation, Combustion and Emissions
,”
SAE
Paper No. 1999-01-0229
.
18.
Harada
,
A.
,
Shimazaki
,
N.
,
Sasaki
,
S.
,
Miyamoto
,
T.
,
Akagawa
,
H.
, and
Tsujimura
,
K.
,
1998
, “
The Effects of Mixture Formation on Premixed Lean Diesel Combustion Engine
,”
SAE
Paper No. 980533
.
19.
Fang
,
T.
,
Coverdill
,
R. E.
,
Chia-fon
,
L.
, and
White
,
R. A.
,
2008
, “
Effects of Injection Angles on Combustion Processes Using Multiple Injection Strategies in an HSDI Diesel Engine
,”
Fuel
,
87
(
15–16
), pp.
3232
3239
.
20.
Genzale
,
C. L.
,
Reitz
,
R. D.
, and
Musculus
,
M. P. B.
,
2008
, “
Effects of Spray Targeting on Mixture Development and Emissions Formation in Late-Injection Low-Temperature Heavy-Duty Diesel Combustion
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2767
2774
.
21.
Kim
,
M. Y.
, and
Lee
,
C. S.
,
2007
, “
Effect of a Narrow Fuel Spray Angle and a Dual Injection Configuration on the Improvement of Exhaust Emissions in a HCCI Diesel Engine
,”
Fuel
,
86
(
17–18
), pp.
2871
2880
.
22.
Jung
,
Y.
,
Bae
,
C.
,
Jang
,
J.
, and
Kim
,
D.
,
2011
, “
Improvement of Premixed Compression Ignition Combustion Using Various Injector Configurations
,”
SAE Paper No. 2011-01-1357
.
23.
Chen
,
Z.
, and
Iwashina
,
T.
,
2009
, “
HC and CO Formation Factors in a PCI Engine
,”
SAE
Paper No. 2009-01-1889
.
24.
Lee
,
S.
, and
Reitz
,
R. D.
,
2006
, “
Spray Targeting to Minimize Soot and CO Formation in Premixed Charge Compression Ignition (PCCI) Combustion With a HSDI Diesel Engine
,”
SAE
Paper No. 2006-01-0918
.
25.
Walter
,
B.
, and
Gatellier
,
B.
,
2002
, “
Development of the High Power NADI™ Concept Using Dual Mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions
,”
SAE
Paper No. 2002-01-1744
.
26.
Akagawa
,
H.
,
Miyamoto
,
T.
,
Harada
,
A.
,
Sasaki
,
S.
,
Shimazaki
,
N.
,
Hashizume
,
T.
, and
Tsujimura
,
K.
,
1999
, “
Approaches to Solve Problems of the Premixed Lean Diesel Combustion
,”
SAE
Paper No. 1999-01-0183
.
27.
Boot
,
M.
,
Luijten
,
C.
,
Somers
,
L.
,
Eguz
,
U.
, and
van Erp
,
D. D. T. M.
,
2009
, “
Uncooled EGR as a Means of Limiting Wall-Wetting Under Early Direct Injection Conditions
,”
SAE
Paper No. 2009-01-0665
.
28.
Kawano
,
D.
,
Suzuki
,
H.
,
Ishii
,
H.
,
Goto
,
Y.
,
Matsuo
,
O.
,
Murata
,
Y.
,
Kusaka
,
J.
, and
Daisho
,
Y.
,
2005
, “
Ignition and Combustion Control of Diesel HCCI
,”
SAE Paper No. 2005-01-2132
.
29.
Ryan
,
T. W.
, and
Callahan
,
T. J.
,
1996
, “
Homogeneous Charge Compression Ignition of Diesel Fuel
,”
SAE
Paper No. 961160
.
30.
Kimura
,
S.
,
Aoki
,
O.
,
Kitahara
,
Y.
, and
Aiyoshizawa
,
E.
,
2001
, “
Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards
,”
SAE
Paper No. 2001-01-0200
.
31.
Kimura
,
S.
,
Aoki
,
O.
,
Ogawa
,
H.
,
Muranaka
,
S.
, and
Enomoto
,
Y.
,
1999
, “
New Combustion Concept for Ultra-Clean and High-Efficiency Small DI Diesel Engines
,”
SAE
Paper No. 1999-01-3681
.
32.
Srivatsa
,
C.
,
Mattson
,
J.
, and
Depcik
,
C.
,
2018
, “
Investigating Pre-Mixed Charge Compression Ignition Combustion in a High Compression Ratio Engine
,”
SAE
Paper No. 2018-01-0900.
33.
Mallamo
,
F.
,
Badami
,
M.
, and
Millo
,
F.
,
2005
, “
Effect of Compression Ratio and Injection Pressure on Emissions and Fuel Consumption of a Small Displacement Common Rail Diesel Engine
,”
SAE
Paper No. 2005-01-0379
.
34.
Kanda
,
T.
,
Hakozaki
,
T.
,
Uchimoto
,
T.
, and
Hatano
,
J.
,
2005
, “
PCCI Operation With Early Injection of Conventional Diesel Fuel
,”
SAE
Paper No. 2005-01-0378
.
35.
Martin
,
G. C.
,
Mueller
,
C. J.
,
Milam
,
D. M.
,
Radovanovic
,
M. S.
, and
Gehrke
,
C. R.
,
2009
, “
Early Direct-Injection, Low-Temperature Combustion of Diesel Fuel in an Optical Engine Utilizing a 15-Hole, Dual-Row, Narrow-Included-Angle Nozzle
,”
SAE Int. J. Engines
,
1
(
1
), pp.
1057
1082
.
36.
Langness
,
C.
,
Mangus
,
M.
, and
Depcik
,
C.
,
2014
, “
Construction, Instrumentation, and Implementation of a Low Cost, Single-Cylinder Compression Ignition Engine Test Cell
,”
SAE
Paper No. 2014-01-0817
.
37.
Heywood
,
J. B.
,
1998
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
, New York.
38.
Hildingsson
,
L.
,
Kalghatgi
,
G.
,
Tait
,
N.
,
Johansson
,
B.
, and
Harrison
,
A.
,
2009
, “
Fuel Octane Effects in the Partially Premixed Combustion Regime in Compression Ignition Engines
,”
SAE
Paper No. 2009-01-2648
.
39.
Lewander
,
M.
,
Ekholm
,
K.
,
Johansson
,
B.
,
Tunestål
,
P.
,
Milovnovic
,
N.
,
Keeler
,
N.
,
Harcombe
,
T.
, and
Bergstrand
,
P.
,
2009
, “
Investigation of the Combustion Characteristics With Focus on Partially Premixed Combustion in a Heavy Duty Engine
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
1063
1074
.
40.
Dickey
,
D.
,
Ryan
,
T.
, and
Matheaus
,
A.
,
1998
, “
NOx Control in Heavy-Duty Diesel Engines - What Is the Limit?
,”
SAE
Paper No. 980174
. https://www.sae.org/publications/technical-papers/content/980174/
41.
Curran
,
H. J.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
,
Callahan
,
G. V.
, and
Dryer
,
F. L.
,
1998
, “
Oxidation of Automotive Primary Reference Fuels at Elevated Pressures
,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
379
387
.
42.
Fu
,
X.
, and
Aggarwal
,
S. K.
,
2015
, “
Two-Stage Ignition and NTC Phenomenon in Diesel Engines
,”
Fuel
,
144
, pp.
188
196
.
43.
Zádor
,
J.
,
Taatjes
,
C. A.
, and
Fernandes
,
R. X.
,
2010
, “
Kinetics of Elementary Reactions in Low-Temperature Autoignition Chemistry
,”
Prog. Energy Combust. Sci.
,
37
(
4
), pp.
371
421
.
44.
Pease
,
R. N.
,
1938
, “
The Negative Temperature Coefficient in the Rate of Propane Oxidation
,”
J. Am. Chem. Soc.
,
60
(
9
), pp.
2244
2246
.
45.
Gallagher
,
S. M.
,
Curran
,
H. J.
,
Metcalfe
,
W. K.
,
Healy
,
D.
,
Simmie
,
J. M.
, and
Bourque
,
G.
,
2008
, “
A Rapid Compression Machine Study of the Oxidation of Propane in the Negative Temperature Coefficient Regime
,”
Combust. Flame
,
153
(
1–2
), pp.
316
333
.
46.
Opat
, R.
,
Ra
, Y.
,
Gonzalez
, D. M. A.
,
Krieger
,
R.
,
Reitz
,
R. D.
,
Foster
,
D. E.
,
Durrett
,
Russell
,
P. D.
, and
Siewert
,
R. M.
,
2007
, “
Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute Low Temperature Combustion in a Light Duty Diesel Engine
,”
SAE
Paper No. 2007-01-0193
.https://www.sae.org/publications/technical-papers/content/2007-01-0193/
You do not currently have access to this content.