Critical slowing down (CSD) is a phenomenon that is common to many complicated dynamical systems as they approach critical transitions/bifurcations. We demonstrate that pressure signals measured during the onset of thermoacoustic instabilities in a gas turbine engine test exhibit evidence of CSD well before the oscillation amplitude increases. CSD was detected through both the variance and the lag-1 auto-regressive coefficient in a rolling window of the pressure signal. Increasing trends in both metrics were quantified using Kendall's τ, and the robustness and statistical significance of the observed increases were confirmed. Changes in the CSD metrics could be detected several seconds prior to changes in the oscillation amplitude. Hence, real-time calculation of these metrics holds promise as early warning signals of impending thermoacoustic instabilities.

References

References
1.
McManus
,
K.
,
Poinsot
,
T.
, and
Candel
,
S.
,
1993
, “
A Review of Active Control of Combustion Instabilities
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
1
29
.
2.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.
3.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J. P.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
147
173
.
4.
O'Connor
,
J.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes
,”
Prog. Energy Combust. Sci.
,
49
, pp.
1
39
.
5.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.
6.
Lieuwen
,
T.
,
2005
, “
Online Combustor Stability Margin Assessment Using Dynamic Pressure Data
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), p.
478
.
7.
Nagaraja
,
S.
,
Kedia
,
K.
, and
Sujith
,
R.
,
2009
, “
Characterizing Energy Growth During Combustion Instabilities: Singularvalues or Eigenvalues?
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2933
2940
.
8.
Gotoda
,
H.
,
Shinoda
,
Y.
,
Kobayashi
,
M.
,
Okuno
,
Y.
, and
Tachibana
,
S.
,
2014
, “
Detection and Control of Combustion Instability Based on the Concept of Dynamical System Theory
,”
Phys. Rev. E
,
89
(
2
), p.
022910
.
9.
Rouwenhorst
,
D.
,
Hermann
,
J.
, and
Polifke
,
W.
,
2016
, “
Online Monitoring of Thermoacoustic Eigenmodes in Annular Combustion Systems Based on a State-Space Model
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021502
.
10.
Sarkar
,
S.
,
Chakravarthy
,
S. R.
,
Ramanan
,
V.
, and
Ray
,
A.
,
2016
, “
Dynamic Data-Driven Prediction of Instability in a Swirl-Stabilized Combustor
,”
Int. J. Spray Combust.
,
8
(
4
), pp.
235
253
.
11.
Kabiraj
,
L.
, and
Sujith
,
R. I.
,
2012
, “
Nonlinear Self-Excited Thermoacoustic Oscillations: Intermittency and Flame Blowout
,”
J. Fluid Mech.
,
713
, pp.
376
397
.
12.
Scheffer
,
M.
,
Bascompte
,
J.
,
Brock
,
W. A.
,
Brovkin
,
V.
,
Carpenter
,
S. R.
,
Dakos
,
V.
,
Held
,
H.
,
van Nes
,
E. H.
,
Rietkerk
,
M.
, and
Sugihara
,
G.
,
2009
, “
Early-Warning Signals for Critical Transitions
,”
Nature
,
461
(
7260
), pp.
53
59
.
13.
Dai
,
L.
,
Korolev
,
K. S.
, and
Gore
,
J.
,
2013
, “
Slower Recovery in Space before Collapse of Connected Populations
,”
Nature
,
496
(
7445
), pp.
355
358
.
14.
Guttal
,
V.
,
Raghavendra
,
S.
,
Goel
,
N.
, and
Hoarau
,
Q.
,
2016
, “
Lack of Critical Slowing Down Suggests That Financial Meltdowns Are Not Critical Transitions, Yet Rising Variability Could Signal Systemic Risk
,”
PLoS One
,
11
(
1
), p.
e0144198
.
15.
Gopalakrishnan
,
E. A.
,
Sharma
,
Y.
,
John
,
T.
,
Dutta
,
P. S.
, and
Sujith
,
R. I.
,
2016
, “
Early Warning Signals for Critical Transitions in a Thermoacoustic System
,”
Sci. Rep.
,
6
(
1
), p.
35310
.
16.
Dakos
,
V.
,
Carpenter
,
S. R.
,
Brock
,
W. A.
,
Ellison
,
A. M.
,
Guttal
,
V.
,
Ives
,
A. R.
,
Kefi
,
S.
,
Livina
,
V.
,
Seekell
,
D. A.
,
van Nes
,
E. H.
, and
Scheffer, M.
,
2012
, “
Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data
,”
PLoS One
,
7
(
7
), p.
e41010
.
17.
Scott
,
D. W.
,
Nadaraya
,
E. A.
, and
Kotz
,
S.
,
1990
, “
Nonparametric Estimation of Probability Densities and Regression Curves
,”
J. Am. Stat. Assoc.
,
85
(
410
), p.
598
.
18.
Bierens
,
H. J.
,
1994
,
Topics in Advanced Econometrics
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.