A model order reduction method based on the component mode synthesis for mistuned bladed disks is introduced, with one component for the disk and one component for each blade. The interface between the components at the blade roots is reduced using the wave-based substructuring (WBS) method, which employs tuned system modes. These system modes are calculated first, and used subsequently during the reduction of the individual components, which eliminates the need to build a partially reduced intermediate model with dense matrices. For the disk, a cyclic Craig–Bampton (CB) reduction is applied. The deviations of the stiffness and mass matrices of individual disk sectors are then projected into the cyclic basis of interior and interface modes of the disk substructure. Thereby, it is possible to model small disk mistuning in addition to large mistuning of the blades.

References

1.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Current Status and Emerging Directions
,”
J. Propul. Power
,
22
(
2
), pp.
384
396
.
2.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.
3.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.
4.
Sinha
,
A.
,
2009
, “
Reduced-Order Model of a Bladed Rotor With Geometric Mistuning
,”
ASME J. Turbomach.
,
131
(
3
), p.
031007
.
5.
Madden
,
A.
,
Epureanu
,
B. I.
, and
Filippi
,
S.
,
2012
, “
Reduced-Order Modeling Approach for Blisks With Large Mass, Stiffness, and Geometric Mistuning
,”
AIAA J.
,
50
(
2
), pp.
366
374
.
6.
Vargiu
,
P.
,
Firrone
,
C. M.
,
Zucca
,
S.
, and
Gola
,
M. M.
,
2011
, “
A Reduced Order Model Based on Sector Mistuning for the Dynamic Analysis of Mistuned Bladed Disks
,”
Int. J. Mech. Sci.
,
53
(
8
), pp.
639
646
.
7.
Beck
,
J. A.
,
Brown
,
J. M.
,
Kaszynski
,
A. A.
,
Cross
,
C. J.
, and
Slater
,
J. C.
,
2015
, “
Geometric Mistuning Reduced-Order Models for Integrally Bladed Rotors With Mistuned Disk–Blade Boundaries
,”
ASME J. Turbomach.
,
137
(
7
), p.
071001
.
8.
Pohle
,
L.
,
2017
,
Schwingungsverhalten verstimmter zyklischer Systeme und deren optimierung durch bewusste Verstimmung
, Leibniz Universität Hannover and TEWISS—Technik und Wissen GmbH, Garbsen.
9.
Hohl
,
A.
,
Siewert
,
C.
,
Panning
,
L.
, and
Wallaschek
,
J.
,
2010
, “
A Substructure Based Reduced Order Model for Mistuned Bladed Disks
,”
ASME
Paper No. DETC2009-87459
.
10.
Tran
,
D.-M.
,
2001
, “
Component Mode Synthesis Methods Using Interface Modes. application to Structures With Cyclic Symmetry
,”
Comput. Struct.
,
79
(
2
), pp.
209
222
.
11.
Bampton
,
M. C. C.
, and
Craig, JR
,
R. R.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
12.
Salas
,
M. G.
,
Bladh
,
R.
,
Mårtensson
,
H.
,
Petrie-Repar
,
P.
,
Fransson
,
T.
, and
Vogt
,
D. M.
,
2017
, “
Forced Response Analysis of a Mistuned, Compressor Blisk Comparing Three Different Reduced Order Model Approaches
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
062501
.
13.
Sternchüss
,
A.
, and
Balmes
,
E.
,
2006
, “
On the Reduction of Quasi-Cyclic Disk Models With Variable Rotation Speeds
,” International Conference on Noise and Vibration Engineering (
ISMA
), San Diego, CA, May 10–12, pp. 3925–3940https://www.sdtools.com/pdf/isma06_cyclic.pdf.
14.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part I: Theoretical Models
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
89
99
.
15.
Craig
,
R.
, and
Chang
,
C.
,
1977
, “
Substructure Coupling for Dynamic Analysis and Testing
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-CR-2781
https://ntrs.nasa.gov/search.jsp?R=19770010568.
16.
Balmès
,
E.
,
1996
, “
Use of Generalized Interface Degrees of Freedom in Component Mode Synthesis
,”
Office National D'études Et De Recherches Aérospatiales
, Châtillon-Sous-Bagneux, France.
17.
Zhang
,
G.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2004
, “
Efficient Component Mode Synthesis With a New Interface Reduction Method
,”
22nd International Modal Analysis Conference (IMAC), Dearborn, MI
, pp.
2043
2055
.
18.
Carassale
,
L.
, and
Maurici
,
M.
,
2017
, “
Interface Reduction in Craig–Bampton Component Mode Synthesis by Orthogonal Polynomial Series
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
052504
.
19.
Donders
,
S.
,
Pluymers
,
B.
,
Ragnarsson
,
P.
,
Hadjit
,
R.
, and
Desmet
,
W.
,
2010
, “
The Wave-Based Substructuring Approach for the Efficient Description of Interface Dynamics in Substructuring
,”
J. Sound Vib.
,
329
(
8
), pp.
1062
1080
.
20.
Castanier
,
M. P.
,
Tan
,
Y.-C.
, and
Pierre
,
C.
,
2001
, “
Characteristic Constraint Modes for Component Mode Synthesis
,”
AIAA J.
,
39
(
6
), pp.
1182
1187
.
21.
Aoyama
,
Y.
, and
Yagawa
,
G.
,
2001
, “
Component Mode Synthesis for Large-Scale Structural Eigenanalysis
,”
Comput. Struct.
,
79
(
6
), pp.
605
615
.
22.
Gibanica
,
M.
,
Abrahamsson
,
T. J.
, and
Rixen
,
D. J.
,
2017
, “
A Reduced Interface Component Mode Synthesis Method Using Coarse Meshes
,”
Procedia Eng.
,
199
, pp.
348
353
.
23.
Kurstak
,
E.
, and
D'Souza
,
K.
,
2017
, “
Multistage Blisk and Large Mistuning Modeling Using Fourier Constraint Modes and Prime
,”
ASME
Paper No. GT2017-63835
.
24.
Sternchüss
,
A.
,
2009
, “
Multi-Level Parametric Reduced Models of Rotating Bladed Disk Assemblies
,” Ph.D. dissertation, École Centrale Paris, Paris, France.
You do not currently have access to this content.