Titanium alloys are used instead of steel and nickel-based alloys to lower the weight of turbines whenever it is applicable. Due to the high manufacturing costs of titanium, near-net-shape processes like laser metal deposition (LMD) processes are an approach to improve the production of new turbomachinery components. Additionally, these processes are also suitable for repair. LMD uses wire or powder as additional material. When highly reactive materials like titanium grade 5 (Ti6Al4V) are processed, wire-based laser metal deposition (LMD-W) processes are superior to powder-based processes due to the smaller reactive surface. Nowadays, three main challenges exist when titanium grade 5 (Ti6Al4V) is processed by additive manufacturing (AM): First of all, the high affinity to oxygen combined with the increased brittleness of the material in case of a contamination with already low amounts of oxygen has to be faced. Second, the material is prone to distortion induced by thermal stress during the manufacturing process. Finally, the material has a complex bimodal microstructure, which has to be adjusted properly to generate optimal strength. The following publication will present how these technical challenges are faced. The heat input into the workpiece and thereby the area that has to be covered with shielding gas is minimized. This is done by minimizing the laser spot size as well as adjusting the travel speed. Thereby a local shielding of the process was realized. With this optimized process, it was possible to generate several specimens for metallurgical analysis.

References

References
1.
Leyens
,
C.
, and
Peters
,
M.
,
2002
,
Titan Und Titanlegierungen
,
3rd ed.
,
Wiley-VCH
,
Weinheim
, Germany.
2.
Lütjering
,
G.
, and
Williams
,
J. C.
,
2013
,
Titanium
,
Springer
,
Berlin
.
3.
Bräunling
,
W. J. G.
,
2015
,
Flugzeugtriebwerke: Grundlagen, Aero-Thermodynamik, Ideale Und Reale Kreisprozesse, Thermische Turbomaschinen, Komponenten, Emissionen Und Systeme
,
4th ed.
,
Springer Vieweg
,
Berlin
.
4.
Klocke
,
F.
,
Schmitt
,
R.
,
Arntz
,
K.
,
Böckmann
,
M. G.
,
Gasser
,
A.
,
Alkhayat
,
M.
,
Kerkhoff
,
J.
,
Klingbeil
,
N.
,
Vollmer
,
T.
, and
Wegener
,
M.
,
2015
, “
Investigation and Assessment of Resource Consumption of Process Chains
,”
Procedia CIRP
,
38
, pp.
234
238
.
5.
Klauke
,
T.
,
2007
,
Schaufelschwingungen Integraler, Realer Verdichterräder Im Hinblick Auf Verstimmung Und Lokalisierung, Der Andere Verl
,
Tönning
,
Lübeck, Marburg
, Germany.
6.
Åkerfeldt
,
P.
,
Antti
,
M.-L.
, and
Pederson
,
R.
,
2016
, “
Influence of Microstructure on Mechanical Properties of Laser Metal Wire-Deposited Ti-6Al-4V
,”
Mater. Sci. Eng.: A
,
674
, pp.
428
437
.
7.
Masubuchi
,
K.
,
1980
,
Analysis of Welded Structures, Residual Stresses, Distortion, and Their Consequences
, Pergamon Press, Kronberg-Taunus, Germany.
8.
Bach
,
P. D.-I. F.-W.
, and
Block
,
D.-I. B.
,
2004
, “
Verbesserung Der Mechanischen Eigenschaften Von Schweißverbindungen an Titanwerkstoffen: Abschlussbericht
,” Institut für Werkstofftechnik Universität Hannover; Laser Zentrum Hannover e.V., Report No. DVS-Nr.: 01.037/IGF-Nr.: 13.137 N.
9.
DVS Merkblatt
,
2003
, “
Schweißen Von Titanwerkstoffen
,” Merkblatt DVS 2713.
10.
Carlsson
,
J.
,
Norell
,
M.
,
Ackelid
,
U.
,
Engqvist
,
H.
, and
Lausmaa
,
J.
, 2015, “
Surface Oxidation Behavior of Ti-6Al-4V Manufactured by Electron Beam Melting (EBM®)
,”
J. Manuf. Processes
,
17
, pp.
120
126
.
11.
Norsk Titanium
,
A. S.
, 2017, “
Norsk Titanium Delivers FAA Approved AM Part to Boeing
,”
Metal Powder Report
,
72
(4), p.
279
.
12.
Ríos
,
S.
,
Colegrove
,
P.
,
Martina
,
F.
, and
Williams
,
S.
, 2018, “
Analytical Process Model for Wire+Arc Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
651
657
.
13.
Yu
,
P.
,
Yan
,
M.
,
Tomus
,
D.
,
Brice
,
C. A.
,
Bettles
,
C. J.
,
Muddle
,
B.
, and
Qian
,
M.
, 2018, “
Microstructural Development of Electron Beam Processed Al-3Ti-1Sc Alloy Under Different Electron Beam Scanning Speeds
,”
Mater. Charact.
,
143
, pp.
43
49
.
14.
Flynn
,
J. M.
,
Shokrani
,
A.
,
Newman
,
S. T.
, and
Dhokia
,
V.
,
2016
, “
Hybrid Additive and Subtractive Machine Tools—Research and Industrial Developments
,”
Int. J. Mach. Tools Manuf.
,
101
, pp.
79
101
.
15.
Clemens
,
U.
, and
Klocke
,
F.
,
2004
, “
Einsatz der CMB-Technologie zur Herstellung von Hinterschneidungen bei metallischen Bauteilen
,” Ph.D. dissertation, RWTH Aachen University, Aachen, Germany.
16.
Klocke
,
F.
,
Arntz
,
K.
,
Teli
,
M.
,
Winands
,
K.
,
Wegener
,
M.
, and
Oliari
,
S.
,
2017
, “
State-of-the-Art Laser Additive Manufacturing for Hot-Work Tool Steels
,”
Procedia CIRP
,
63
, pp.
58
63
.
17.
Kim
,
J.-D.
, and
Peng
,
Y.
,
2000
, “
Plunging Method for Nd: YAG Laser Cladding With Wire Feeding
,”
Opt. Lasers Eng.
,
33
(
4
), pp.
299
309
.
18.
Mok
,
S. H.
,
Bi
,
G.
,
Folkes
,
J.
,
Pashby
,
I.
, and
Segal
,
J.
,
2008
, “
Deposition of Ti–6Al–4V Using a High Power Diode Laser and Wire—Part II: Investigation on the Mechanical Properties
,”
Surf. Coat. Technol.
,
202
(
19
), pp.
4613
4619
.
19.
Mok
,
S. H.
,
Bi
,
G.
,
Folkes
,
J.
, and
Pashby
,
I.
,
2008
, “
Deposition of Ti–6Al–4V Using a High Power Diode Laser and Wire—Part I: Investigation on the Process Characteristics
,”
Surf. Coat. Technol.
,
202
(
19
), pp.
3933
3939
.
20.
Baufeld
,
B.
,
Brandl
,
E.
, and
van der Biest
,
O.
,
2011
, “
Wire Based Additive Layer Manufacturing: Comparison of Microstructure and Mechanical Properties of Ti–6Al–4V Components Fabricated by Laser-Beam Deposition and Shaped Metal Deposition
,”
J. Mater. Process. Technol.
,
211
(
6
), pp.
1146
1158
.
21.
Brandl
,
E.
,
Michailov
,
V.
,
Viehweger
,
B.
, and
Leyens
,
C.
,
2011
, “
Deposition of Ti–6Al–4V Using Laser and Wire—Part II: Hardness and Dimensions of Single Beads
,”
Surf. Coat. Technol.
,
206
(
6
), pp.
1130
1141
.
22.
Brandl
,
E.
,
Michailov
,
V.
,
Viehweger
,
B.
, and
Leyens
,
C.
,
2011
, “
Deposition of Ti–6Al–4V Using Laser and Wire—Part I: Microstructural Properties of Single Beads
,”
Surf. Coat. Technol.
,
206
(
6
), pp.
1120
1129
.
23.
Brandl
,
E.
,
Schoberth
,
A.
, and
Leyens
,
C.
,
2012
, “
Morphology, Microstructure, and Hardness of Titanium (Ti-6Al-4V) Blocks Deposited by Wire-Feed Additive Layer Manufacturing (ALM)
,”
Mater. Sci. Eng.: A
,
532
, pp.
295
307
.
24.
Kaierle
,
S.
,
Barroi
,
A.
,
Noelke
,
C.
,
Hermsdorf
,
J.
,
Overmeyer
,
L.
, and
Haferkamp
,
H.
,
2012
, “
Review on Laser Deposition Welding: From Micro to Macro
,”
Phys. Procedia
,
39
, pp.
336
345
.
25.
Syed
,
W. U. H.
,
Pinkerton
,
A. J.
, and
Li
,
L.
,
2006
, “
Combining Wire and Coaxial Powder Feeding in Laser Direct Metal Deposition for Rapid Prototyping
,”
European Materials Research Society 2005—Symposium-J: Advances in Laser and Lamp Processing of Functional Materials EMRS 2005
, Strasbourg, France, May 31–June 3, pp.
4803
4808
.
26.
Uhlmann
,
E.
,
Kersting
,
R.
,
Klein
,
T. B.
,
Cruz
,
M. F.
, and
Borille
,
A. V.
,
2015
, “
Additive Manufacturing of Titanium Alloy for Aircraft Components
,”
Procedia CIRP
,
35
, pp.
55
60
.
27.
Kelbassa
,
I.
,
2006
, “
Qualifizieren Des Laserstrahl-Auftragschweißens Von BLISKs Aus Nickel- Und Titanbasislegierungen
,” Ph.D. dissertation, RWTH Aachen University, Aachen, Germany.
28.
Klocke
,
F.
,
Arntz
,
K.
,
Klingbeil
,
N.
, and
Schulz
,
M.
,
2017
, “
Wire-Based Laser Metal Deposition for Additive Manufacturing of TiAl6V4: Basic Investigations of Microstructure and Mechanical Properties From Build Up Parts
,”
Proc. SPIE
,
10095
, p.
100950U
.
29.
Gockel
,
J.
,
Beutha
,
J.
, and
Taminger
,
K.
,
2014
, “
Integrated Control of Solidification Microstructure and Melt Pool Dimensions in Electron Beam Wire Feed Additive Manufacturing of Ti-6Al-4V
,”
Addit. Manuf.
,
1–4
, pp.
119
126
.
30.
Mackwood
,
A. P.
, and
Crafer
,
R. C.
,
2005
, “
Thermal Modelling of Laser Welding and Related Processes: A Literature Review
,”
Opt. Laser Technol.
,
37
(
2
), pp.
99
115
.
31.
Akbari
,
M.
,
Saedodin
,
S.
,
Toghraie
,
D.
,
Shoja-Razavi
,
R.
, and
Kowsari
,
F.
,
2014
, “
Experimental and Numerical Investigation of Temperature Distribution and Melt Pool Geometry During Pulsed Laser Welding of Ti6Al4V Alloy
,”
Opt. Laser Technol.
,
59
, pp.
52
59
.
32.
Arrizubieta
,
J. I.
,
Lamikiz
,
A.
,
Klocke
,
F.
,
Martínez
,
S.
,
Arntz
,
K.
, and
Ukar
,
E.
,
2017
, “
Evaluation of the Relevance of Melt Pool Dynamics in Laser Material Deposition Process Modeling
,”
Int. J. Heat Mass Transfer
,
115
, pp.
80
91
.
33.
Heller
,
K.
,
Kessler
,
S.
,
Dorsch
,
F.
,
Berger
,
P.
, and
Graf
,
T.
,
2017
, “
Analytical Description of the Surface Temperature for the Characterization of Laser Welding Processes
,”
Int. J. Heat Mass Transfer
,
106
, pp.
958
969
.
34.
Klocke
,
F.
,
Schulz
,
M.
, and
Gräfe
,
S.
,
2017
, “
Optimization of the Laser Hardening Process by Adapting the Intensity Distribution to Generate a Top-Hat Temperature Distribution Using Freeform Optics
,”
Coatings
,
7
(
6
), p.
77
.
You do not currently have access to this content.