In the design of gas turbine combustors, efforts are engineered toward reducing the combustion pollutant emission levels. The pollutant emissions can be reduced by premixing the fuel and the air prior to ignition. However, the main challenges encountered with premixing are flame flashback and blowout, thus, the preference of diffusion flames. In this study, flame behavior, flow patterns, and thermochemical fields of backward-inclined diffusion jet flames in crossflow at low jet-to-crossflow momentum flux ratio of smaller than 0.04 were studied in a wind tunnel. The backward-inclination angle was varied within 0–50 deg. The flames presented three characteristic modes: crossflow dominated flame (low backward inclination angle) denoted by a large down-washed recirculation flame, transitional flame (mediate backward inclination angle) identified by a recirculation flame and a tail flame, and jet dominated flame (high backward inclination angle) characterized by a blue flame base, a yellow tail flame, and the absence of a recirculation flame. Short flames are detected in the regime of the crossflow dominated flames—an indication of improved fuel–air mixing. The findings suggest that for low exhaust emissions which are vigorously pursued in the aviation and thermal power plant industries, especially during low-load operations, the jet dominated flames are the preferable flames as they generate low unburned hydrocarbon, carbon monoxide, and nitric oxide emissions compared to the other flames.

References

References
1.
Escudier
,
M. P.
,
1971
, “
Aerodynamics of a Burning Turbulent Gas Jet in a Crossflow
,”
Combust. Sci. Technol.
,
4
(
1
), pp.
293
301
.
2.
Karagozian
,
A. R.
,
1986
, “
The Flame Structure and Vorticity Generated by a Chemically Reactingtransverse Jet
,”
AIAA J.
,
24
(
9
), pp.
1502
1507
.
3.
Kolla
,
H.
,
Grout
,
R. W.
,
Gruber
,
A.
, and
Chen
,
J. H.
,
2012
, “
Mechanisms of Flame Stabilization and Blowout in a Reacting Turbulent Hydrogen Jet in Cross-Flow
,”
Combust. Flame
,
159
(
8
), pp.
2755
2766
.
4.
Wagner
,
J. A.
,
Grib
,
S. W.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2015
, “
Flowfield Measurements and Flame Stabilization of a Premixed Reacting Jet in Vitiated Crossflow
,”
Combust. Flame
,
162
(
10
), pp.
3711
3727
.
5.
Steinberg
,
A. M.
,
Sadanandan
,
R.
,
Dem
,
C.
,
Kutne
,
P.
, and
Meier
,
W.
,
2013
, “
Structure and Stabilization of Hydrogen Jet Flames in Cross-Flows
,”
Proc. Combust Inst.
,
34
(
1
), pp.
1499
1507
.
6.
Ben-Yakar
,
A.
, and
Hanson
,
R. K.
,
1998
, “
Experimental Investigation of Flame-Holding Capability of Hydrogen Transverse Jet in Supersonic Cross-Flow
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
2173
2180
.
7.
Hasselbrink
,
E. F.
, and
Mungal
,
M. G.
,
2001
, “
Transverse Jets and Jet Flames Part 1 Scaling Laws for Strong Transverse Jets
,”
J. Fluid Mech.
,
443
, pp.
1
25
.
8.
Grout
,
R. W.
,
Gruber
,
A.
,
Yoo
,
C. S.
, and
Chen
,
J. H.
,
2011
, “
Direct Numerical Simulation of Flame Stabilization Downstream of a Transverse Fuel Jet in Cross-Flow
,”
Proc. Combust Inst.
,
33
(
1
), pp.
1629
1637
.
9.
Brzustowski
,
T. A.
,
Gollahalli
,
S. R.
, and
Sullivan
,
H. F.
,
1975
, “
The Turbulent Hydrogen Diffusion Flame in a Cross-Wind
,”
Combust. Sci. Technol.
,
11
(
1–2
), pp.
29
33
.
10.
Gollahalli
,
S. R.
,
Brzustowski
,
T. A.
, and
Sullivan
,
H. F.
,
1975
, “
Characteristics of a Turbulent Propane Diffusion Flame in a Cross-Wind
,”
Trans. Can. Mech. Eng.
,
3
(
4
), pp.
205
214
.
11.
Brzustowski
,
T. A.
,
1976
, “
Flaring in the Energy Industry
,”
Prog. Energy Combust. Sci.
,
2
(
3
), pp.
129
141
.
12.
Botros
,
P. E.
, and
Brzustowski
,
T. A.
,
1979
, “
An Experimental and Theoretical Study of the Turbulent Diffusion Flame in Cross-Flow
,”
Symp. (Int.) Combust.
,
17
(
1
), pp.
389
398
.
13.
Kalghatgi
,
G. T.
,
1981
, “
Blow-Out Stability of Gaseous Jet Diffusion Flames—Part II: Effect of Cross Wind
,”
Combust. Sci. Technol.
,
26
(
5–6
), pp.
241
244
.
14.
Birch
,
A. D.
,
Brown
,
D. R.
,
Fairweather
,
M.
, and
Hargrave
,
G. K.
,
1989
, “
An Experimental Study of a Turbulent Natural Gas Jet in a Cross-Flow
,”
Combust. Sci. Technol.
,
66
(
4–6
), pp.
217
232
.
15.
Askari
,
A.
,
Bullman
,
S. J.
,
Fairweather
,
M.
, and
Swaffield
,
F.
,
1990
, “
The Concentration Field of a Turbulent Jet in a Cross-Wind
,”
Combust. Sci. Technol.
,
73
(
1–3
), pp.
463
478
.
16.
Ellzey
,
J. L.
,
Berbe
,
J. G.
,
Tay
,
E. Z. F.
, and
Foster
,
D. E.
,
1990
, “
Total Soot Yield From a Propane Diffusion Flame in Cross-Flow
,”
Combust. Sci. Technol.
,
71
(
1–3
), pp.
41
52
.
17.
Fairweather
,
M.
,
Jones
,
W. P.
,
Lindstedt
,
R. P.
, and
Marquis
,
A. J.
,
1991
, “
Predictions of a Turbulent Reacting Jet in a Cross-Flow
,”
Combust. Flame
,
84
(
3–4
), pp.
361
375
.
18.
Gollahalli
,
S. R.
, and
Nanjundappa
,
B.
,
1995
, “
Burner Wake Stabilized Gas Jet Flames in Cross-Flow
,”
Combust. Sci. Technol.
,
109
(
1–6
), pp.
327
346
.
19.
Bourguignon
,
E.
,
Johnson
,
M. R.
, and
Kostiuk
,
L. W.
,
1999
, “
The Use of a Closed-Loop Wind Tunnel for Measuring the Combustion Efficiency of Flames in a Cross Flow
,”
Combust. Flame
,
119
(
3
), pp.
319
334
.
20.
Bandaru
,
R. V.
, and
Turns
,
S. R.
,
2000
, “
Turbulent Jet Flames in a Crossflow: Effects of Some Jet, Crossflow, and Pilot-Flame Parameters on Emissions
,”
Combust. Flame
,
121
(
1–2
), pp.
137
151
.
21.
Johnson
,
M. R.
, and
Kostiuk
,
L. W.
,
2000
, “
Efficiencies of Low-Momentum Jet Diffusion Flames in Crosswinds
,”
Combust. Flame
,
123
(
1–2
), pp.
189
200
.
22.
Johnson
,
M. R.
,
Wilson
,
D. J.
, and
Kostiuk
,
L. W.
,
2001
, “
A Fuel Stripping Mechanism for Wake-Stabilized Jet Diffusion Flames in Crossflow
,”
Combust. Sci. Technol.
,
169
(
1
), pp.
155
174
.
23.
Majeski
,
A. J.
,
Wilson
,
D. J.
, and
Kostiuk
,
L. W.
,
2004
, “
Predicting the Length of Low-Momentum Jet Diffusion Flames in Crossflow
,”
Combust. Sci. Technol.
,
176
(
12
), pp.
2001
2025
.
24.
Sullivan
,
R.
,
Wilde
,
B.
,
Noble
,
D. R.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Time-Averaged Characteristics of a Reacting Fuel Jet in Vitiated Cross-Flow
,”
Combust. Flame
,
161
(
7
), pp.
1792
1803
.
25.
Huang
,
R. F.
,
Kimilu
,
R. K.
, and
Hsu
,
C. M.
,
2016
, “
Effects of Jet Pulsation Intensity on a Wake-Stabilized Non-Premixed Jet Flame in Crossflow
,”
Exp. Therm. Fluid Sci.
,
78
, pp.
153
166
.
26.
Hasselbrink
,
E. F.
, and
Mungal
,
M. G.
,
1998
, “
Observations on the Stabilization Region of Lifted Non-Premixed Methane Transverse Jet Flames
,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
1167
1173
.
27.
Gollahalli
,
S. R.
, and
Pardiwalla
,
D.
,
2002
, “
Comparison of the Flame Characteristics of Turbulent Circular and Elliptic Jets in a Crossflow
,”
ASME J. Energy Resour. Technol.
,
124
(
3
), pp.
197
203
.
28.
Kostiuk
,
L. W.
,
Mejeski
,
A. J.
,
Poudenx
,
P.
,
Johnson
,
M. R.
, and
Wilson
,
D. J.
,
2000
, “
Scaling of Wake-Stabilized Jet Diffusion Flames in a Transverse Air Stream
,”
Proc. Combust Inst.
,
28
(
1
), pp.
553
559
.
29.
Huang
,
R. F.
, and
Chang
,
J. M.
,
1994
, “
The Stability and Visualized Flame and Flow Structures of a Combusting Jet in Cross Flow
,”
Combust. Flame
,
98
(
3
), pp.
267
278
.
30.
Kalghatgi
,
G. T.
,
1982
, “
Blow-Out Stability of Gaseous Jet Diffusion Flames—Part III: Effect of Burner Orientation to Wind Direction
,”
Combust. Sci. Technol.
,
28
(
5–6
), pp.
241
245
.
31.
Han
,
D.
, and
Mungal
,
M. G.
,
2003
, “
Simultaneous Measurements of Velocity and CH Distribution. Part II: Deflected Jet Flames
,”
Combust. Flame
,
133
(
1–2
), pp.
1
17
.
32.
Luo
,
M. C.
,
1997
, “
Effects of Radiation on Temperature Measurement in a Fire Environment
,”
J. Fire Sci.
,
15
(
6
), pp.
443
461
.http://journals.sagepub.com/doi/10.1177/073490419701500602
33.
Huang
,
R. F.
, and
Wang
,
S. M.
,
1999
, “
Characteristic Flow Modes of Wake-Stabilized Jet Flames in a Transverse Air Stream
,”
Combust. Flame
,
117
(
1–2
), pp.
59
77
.
34.
Huang
,
R. F.
, and
Yang
,
M. J.
,
1996
, “
Thermal and Concentration Fields of Burner-Attached Jet Flames in Cross Flow
,”
Combust. Flame
,
105
(
1–2
), pp.
211
224
.
35.
Khouygani
,
M. G.
,
Huang
,
R. F.
, and
Hsu
,
C. M.
,
2015
, “
Flow Characteristics in Median Plane of a Backward-Inclined Elevated Transverse Jet
,”
Exp. Therm. Fluid Sci.
,
62
, pp.
164
174
.
36.
Han
,
D. H.
,
Orozco
,
V.
, and
Mungal
,
M. G.
,
2000
, “
Gross-Entrainment Behavior of Turbulent Jets Injected Obliquely Into a Uniform Crossflow
,”
AIAA J.
,
38
(
9
), pp.
1643
1649
.
37.
Kimilu
,
R. K.
,
Huang
,
R. F.
, and
Hsu
,
C. M.
,
2016
, “
Non-Premixed Burner-Attached Jet Flames in Crossflow Pulsed at Resonance Frequency
,”
J. Propul. Power
,
33
(
6
), pp.
1332
1350
.
38.
Liu
,
Y.
,
Sun
,
X.
,
Sethi
,
V.
,
Nalianda
,
D.
,
Li
,
Y.-G.
, and
Wang
,
L.
,
2017
, “
Review of Modern Low Emissions Combustion Technologies for Aero Gas Turbine Engines
,”
Prog. Aerosp. Sci.
,
94
, pp.
12
45
.
39.
Savas
,
O.
,
Huang
,
R. F.
, and
Gollahalli
,
S. R.
,
1997
, “
Structure of the Flow Field of a Nonpremixed Gas Jet Flame in Cross-Flow
,”
ASME J. Energy Resour. Technol.
,
119
(
2
), pp.
137
144
.
You do not currently have access to this content.