This paper presents the first experimental results of the systematic investigation of forced convection heat transfer in scaled generic models of steam turbine casing side spaces with varied geometric dimensions under fully turbulent air flow. Data were obtained by two redundant low-heat measuring methods. The results from the steady-state inverse method are in good agreement with the data from the local overtemperature method, which was applied via a novel miniaturized heat transfer coefficient (HTC) sensor concept. All experiments were conducted at the new side space test rig “SiSTeR” at TU Dresden. The dependencies of the HTC distributions on the axial widths of the cavity and its inlet and on the eccentricity between them were investigated for Reynolds numbers from Re=40,000 to 115,000 in the annular main flow passage. The measured HTC distributions showed a maximum at the stagnation point where the induced jet impinges on the wall surface, and decreasing values toward the cavity corners. Local values scaled roughly with the main flow Reynolds number. The HTC distributions thereby differed considerably depending on the dimensions and the form of the cavity, ranging from symmetric T-shape to asymmetric L-shape, with upstream or downstream shifted sidewalls.

References

References
1.
Маляренко
,
В. А.
,
Голощапов
,
В. Н.
,
Барсуков
,
В. А.
,
КоTульская
,
О. В.
, and
Черноусенко
,
О. Ю.
,
1991
, “
Теnлообмен u газоuнамuка в камеpаx оmбopа napoвыx mypбuн
,” Наукова думка, Киев.
2.
Plotkin
,
E. R.
,
Leizerovich
,
A. S.
, and
Muratova
,
I. V.
,
1971
, “
Investigation of Heat-Transfer Conditions in the K-200-130 Steam Turbine
,”
Therm. Eng.
,
18
(
5
), pp.
41
45
.
3.
Leizerovich
,
A. S.
, and
Plotkin
,
E. R.
,
1991
, “
Correlating the Results of Experimental Investigations Into Heat Transfer Coefficients of Steam Turbine Stator Elements
,”
Therm. Eng.
,
38
(
10
), pp.
550
553
.
4.
Маховко
,
Ю. Е.
, and
Верников
,
Е. М.
,
1973
, “
Определение локальных коэффициентов теплоотдачи в корпусах паровых турбин
,” Энергомашuностроение,
19
(
8
), pp.
10
12
.
5.
Aleshin
,
A. I.
,
Leizerovich
,
A. S.
, and
Plotkin
,
E. R.
,
1976
, “
Conditions of Heat Transfer and Gasdynamics in Steam Turbine Extraction Chambers
,”
Therm. Eng.
,
23
(
8
), pp.
37
42
.
6.
Matsevityi
,
Y. M.
,
Barsukov
,
V. A.
,
Goloshchapov
,
V. N.
, and
Malyarenko
,
V. A.
,
1979
, “
Estimation of the Heat-Transfer Conditions in the Neighborhood of the Stagnation Point During Impingement of a Jet on an Obstacle
,”
J. Eng. Phys.
,
37
(
2
), pp.
899
903
.
7.
Голощапов
,
В. Н.
,
Котульская
,
О. В.
, and
ПозиΓун
,
М. П.
,
2000
, “
Теплообмен на поверхности камеры реΓенеративноΓо отбора паровой турбины
,” Энергетuка u электpuфuкаu,uя,
6
, pp.
7
11
.
8.
Барсуков
,
В. А.
,
1980
, “
Исследование Γазодинамики и теплообмена в камерах отбора паровых турбин
,”
дис. канд. техн. наук., Харьков.
9.
Маляренко
,
В. А.
,
1982
, “
Исследование теплообмена в камерах отбора турбин типа К-300-240 ПОТ ХТЗ в пусковых режимах
,” Энергетuческое машuиностроенuе,
34
, pp.
68
77
.
10.
Маляренко
,
В. А.
, and
Барсуков
,
В. А.
,
1980
, “
Обобщенная методика расчета коэффициентов теплоотдачи в камерах реΓенеративноΓо отбора паровых турбин
,” Энергеmuческое машuносmроенuе,
30
, pp.
74
83
.
11.
Чэнь
,
Д.
,
2000
, “
Моделирование течений в трактах отбора для определения их сопротивления и влияния на структуру потока в околоотборных ступенях паровых турбин
,”
дис. канд. техн. наук. Государственный Tехнический Университет, Санкт-ПетербурΓ.
12.
Leizerovich
,
A. S.
,
2008
,
Steam Turbines for Modern Fossil-Fuel Power Plants
,
Fairmont Press
,
Lilburn/Georgia, Boca Raton, FL
.
13.
Siemens AG
,
2004
, “
3D-Zeichnung Einer Industriedampfturbine Des Typs SST-600: EOG20041001-02
,” Siemens AG, München/Berlin, Germany, accessed Sept. 20, 2018, www.siemens.com/press/photo/EFPG20041001-01d
14.
Spura
,
D.
,
Lueckert
,
J.
,
Schoene
,
S.
, and
Gampe
,
U.
,
2015
, “
Concept Development for the Experimental Investigation of Forced Convection Heat Transfer in Circumferential Cavities With Variable Geometry
,”
Int. J. Therm. Sci.
,
96
, pp.
277
289
.
15.
Spura
,
D.
,
2013
, “
Voruntersuchungen zur experimentellen Modellierung des Wärmeübergangs in Seitenräumen von Dampfturbinengehäusen
,” Diploma thesis, Technische Universität Dresden, Dresden, Germany.
16.
Heße
,
C.
,
2011
, “
Entwicklung eines wissensbasierten modularen Verfahrens zur Beurteilung der thermischen Verkrümmung von Industriedampfturbinengehäusen
,” Doctoral dissertation, Technische Universität Dresden, Dresden, Germany.
17.
Uffrecht
,
W.
,
Günther
,
A.
, and
Caspary
,
V.
,
2012
, “
Kleine Thermistoren zur Messung von Wärmeübergangskoeffizienten
,”
Tech. Mess.
,
79
(
12
), pp.
549
558
.
18.
Uffrecht
,
W.
,
Günther
,
A.
, and
Caspary
,
V.
,
2012
, “
Electro-Thermal Measurement of Heat Transfer Coefficients
,”
ASME
Paper No. GT2012-68144.
19.
Uffrecht
,
W.
,
Heinschke
,
B.
,
Günther
,
A.
,
Caspary
,
V.
, and
Odenbach
,
S.
,
2015
, “
Measurement of Heat Transfer Coefficients at Up to 25,500 g—A Sensor Test at a Rotating Free Disk With Complex Telemetric Instrumentation
,”
Int. J. Therm. Sci.
,
96
, pp.
331
344
.
20.
Heinschke
,
B.
,
Uffrecht
,
W.
,
Odenbach
,
S.
, and
Caspary
,
V.
,
2018
, “
Telemetric Heat Transfer Coefficient Measurements in an Open Rotor Stator System Air Gap at Up to 8500 Rpm
,”
ASME
Paper No. GT2018-75060.
21.
Heinschke
,
B.
,
Uffrecht
,
W.
,
Günther
,
A.
,
Odenbach
,
S.
, and
Caspary
,
V.
,
2014
, “
Telemetric Measurement of Heat Transfer Coefficients in Gaseous Flow: First Test of a Recent Sensor Concept in a Rotating Application
,”
ASME
Paper No. GT2014-26239.
22.
Eschmann
,
G.
,
Kuntze
,
A.
,
Uffrecht
,
W.
,
Kaiser
,
E.
, and
Odenbach
,
S.
,
2015
, “
Experimental and Numerical Investigation of Heat Transfer Coefficients in Gaseous Impinging Jets: First Test of a Recent Sensor Concept for Steady and Unsteady Flow
,”
Int. J. Therm. Sci.
,
96
, pp.
290
304
.
23.
Gnielinski
,
V.
, “
Heat Transfer in Concentric Annular and Parallel Plate Ducts
,”
VDI Heat Atlas
, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, ed., Springer, Berlin, pp. 701–708.
24.
Spura
,
D.
,
Eschmann
,
G.
,
Uffrecht
,
W.
,
Gampe
,
U.
, and
Odenbach
,
S.
, 2016, “
COOREFLEX 4.3.6: Thermisches und mechanisches Verhalten von Turbinengehäusen: Statusbericht
,” Tagungsband zum 15. Statusseminar der AG Turbo, Bergisch-Gladbach, Germany,
Dec. 12–13
.
25.
Frąckowiak
,
A.
,
Spura
,
D.
,
Gampe
,
U.
, and
Ciałkowski
,
M.
,
2018
, “
Determination of Heat Transfer Coefficient in t-Shaped Cavity by Means of Solving the Inverse Heat Conduction Problem
,”
11th International Conference on Computational Heat, Mass and Momentum Transfer
, Cracow, Poland, May 21–24.
26.
Gnielinski
,
V.
, “
Heat Transfer in Pipe Flow
,”
VDI Heat Atlas
, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, ed., Springer, Berlin, pp. 693–699.
You do not currently have access to this content.