A considerable amount of research has been conducted to develop reduced order models (ROMs) of bladed disks that can be constructed using single sector calculations when there is mistuning present. A variety of methods have been developed to efficiently handle different types of mistuning ranging from small frequency mistuning, which can be modeled using a variety of methods including component mode mistuning (CMM), to large geometric mistuning, which can be modeled using multiple techniques including pristine rogue interface modal expansion (PRIME). Research has also been conducted on developing ROMs that can accommodate the variation of specific parameters in the reduced space; these models are referred to as parametric reduced order models (PROMs). This work introduces a PROM for bladed disks that allows for the variation of rotational speed in the reduced space. These PROMs are created by extracting information from sector models at three rotational speeds, and then the appropriate ROM is efficiently constructed in the reduced space at any other desired speed. This work integrates these new PROMs for bladed disks with two existing mistuning methods, CMM and PRIME, to illustrate how the method can be readily applied for a variety of mistuning methods. Frequencies and forced response calculations using these new PROMs are compared to the full order finite element calculations to demonstrate the effectiveness of the method.

References

References
1.
Griffin
,
J. H.
, and
Hoosac
,
T. M.
,
1984
, “
Model Development and Statistical Investigation of Turbine Blade Mistuning
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
106
(
2
), pp.
204
210
.
2.
El-Bayoumy
,
L. E.
, and
Srinivasan
,
A. V.
,
1975
, “
Influence of Mistuning on Rotor-Blade Vibrations
,”
AIAA J.
,
13
(
4
), pp.
460
464
.
3.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part I: Theoretical Models
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
89
99
.
4.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part II: Application
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
100
108
.
5.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.
6.
Yang
,
M. T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.
7.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
,
124
(
4
), pp.
597
605
.
8.
D'Souza
,
K.
,
Saito
,
A.
, and
Epureanu
,
B. I.
,
2012
, “
Reduced-Order-Modeling for Nonlinear Analysis of Cracked Mistuned Multi-Stage Bladed Disk Systems
,”
AIAA J.
,
50
(
2
), pp.
304
312
.
9.
D'Souza
,
K.
,
Jung
,
C.
, and
Epureanu
,
B. I.
,
2013
, “
Analyzing Mistuned Multi-Stage Turbomachinery Rotors With Aerodynamic Effects
,”
J. Fluids Struct.
,
42
, pp.
388
400
.
10.
Madden
,
A.
,
Epureanu
,
B. I.
, and
Filippi
,
S.
,
2012
, “
Reduced-Order Modeling Approach for Blisks With Large Mass, Stiffness, and Geometric Mistuning
,”
AIAA J.
,
50
(
2
), pp.
366
74
.
11.
Gan
,
Y.
,
Mayer
,
J. L.
,
D'Souza
,
K. X.
, and
Epureanu
,
B. I.
,
2017
, “
A Mode-Accelerated XXr (MAX) Method for Complex Structures With Large Blends
,”
Mech. Syst. Signal Process.
,
93
(
Suppl. C
), pp.
1
15
.
12.
Tang
,
W.
,
Baek
,
S.
, and
Epureanu
,
B. I.
,
2017
, “
Reduced-Order Models for Blisks With Small and Large Mistuning and Friction Dampers
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012507
.
13.
Rzadkowski
,
R.
, and
Drewczynski
,
M.
,
2012
, “
Multistage Coupling of Eight Bladed Discs on a Solid Shaft
,”
ASME
Paper No. GT2010-22803.
14.
D'Souza
,
K.
, and
Epureanu
,
B. I.
,
2011
, “
A Statistical Characterization of the Effects of Mistuning in Multi-Stage Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p. 012503.
15.
Rzadkowski
,
R.
, and
Maurin A.
, 2012, “
Multistage Coupling of Eight Mistuned Bladed Disk on a Solid Shaft: Part 1—Free Vibration Analysis
,”
ASME
Paper No. GT2012-68391.
16.
Sternchüss
,
A.
,
Balmès
,
E.
,
Jean
,
P.
, and
Lombard
,
J.-P.
,
2009
, “
Reduction of Multistage Disk Models: Application to an Industrial Rotor
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
012502
.
17.
Laxalde
,
D.
,
Lombard
,
J.-P.
, and
Thouverez
,
F.
,
2007
, “
Dynamics of Multistage Bladed Disks Systems
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
1058
1064
.
18.
Song
,
S. H.
,
2007
, “
Vibration Analysis and System Identification of Mistuned Multistage Turbine Engine Rotors
,” Ph.D. thesis, The University of Michigan, Ann Arbor, MI.
19.
Kurstak
,
E.
, and
D'Souza
,
K.
,
2018
, “
Multistage Blisk and Large Mistuning Modeling Using Fourier Constraint Modes and PRIME
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
072505
.
20.
Andreaus
,
U.
,
Casini
,
P.
, and
Vestroni
,
F.
,
2007
, “
Non-Linear Dynamics of a Cracked Cantilever Beam Under Harmonic Excitation
,”
Int. J. Nonlinear Mech.
,
42
(
3
), pp.
566
575
.
21.
Jung
,
C.
,
D'Souza
,
K.
, and
Epureanu
,
B. I.
,
2014
, “
Nonlinear Amplitude Approximation for Bilinear Systems
,”
J. Sound Vib.
,
333
(
13
), pp.
2909
19
.
22.
Tien
,
M.-H.
, and
D'Souza
,
K.
,
2017
, “
A Generalized Bilinear Amplitude and Frequency Approximation for Piecewise-Linear Nonlinear Systems With Gaps or Prestress
,”
Nonlinear Dyn.
,
88
(
4
), pp.
2403
2416
.
23.
Tien
,
M.-H.
,
Hu
,
T.
, and
D'Souza
,
K.
,
2018
, “
Generalized Bilinear Amplitude Approximation and X-Xr for Modeling Cyclically Symmetric Structures With Cracks
,”
ASME J. Vib. Acoust.
,
140
(
4
), p.
041012
.
24.
Sternchüss
,
A.
,
2010
, “
Multi-Level Parametric Reduced Models of Rotating Bladed Disk Assemblies
,”
Ph.D. thesis
, Ecole Centrale Paris, Paris, France.https://tel.archives-ouvertes.fr/tel-00366252v2/document
25.
Sreenivasamurthy
,
S.
, and
Ramamurti
,
V.
,
1981
, “
A Parametric Study of Vibration of Rotating Pre-Twisted and Tapered Low Aspect Ratio Cantilever Plates
,”
J. Sound Vib.
,
76
(
3
), pp.
311
328
.
26.
Hong
,
S. K.
,
Epureanu
,
B. I.
,
Castanier
,
M. P.
, and
Gorsich
,
D. J.
,
2010
, “
Parametric Reduced Order Models for Predicting the Vibration Response of Complex Structures With Component Damage and Uncertainties
,”
J. Sound Vib.
,
330
(
6
), pp.
1091
1110
.
You do not currently have access to this content.