The gas turbine market tends to drive development toward higher operational and fuel flexibility. In order to meet these requirements, the GT13E2® combustion system (General Electric, Schenectady, NY) with the AEV® burner (General Electric) has been further developed to extend the range of fuels according to GE fuel capabilities. The development includes operation with diluted natural gas, gases with very high C2+ contents up to liquefied petroleum gas on the gaseous fuels side, and nonstandard liquid fuels such as biodiesel and light crude oil (LCO). Results of full scale high pressure single burner combustion test in the test facilities at DLR-Köln are shown to demonstrate these capabilities. With these tests at typical pressure and temperature conditions, safe operation ranges with respect to flame flashback and lean blow out (LBO) were identified. In addition, the recent burner mapping at the DLR in Köln results in emission behavior similar to typical fuels as natural gas and fuel oil #2. It was also possible to achieve low emission levels with liquid fuels with a high fuel bound nitrogen (FBN) content. Based on these results, the GT13E2 gas turbine has demonstrated capability with a high variety of gaseous and liquid fuel at power ranges of 200 MW and above. The fuels can be applied without specific engine adjustments or major hardware changes over a whole range of gas turbine operation including startup and gas turbine (GT) acceleration.

References

1.
World Economic Forum,
2012
, “
Energy for Economic Growth, Energy Vision
,” World Economic Forum, New York, accessed Sept. 18, 2018, http://reports.weforum.org/energy-for-economic-growth-energy-vision-update-2012/
2.
EPA,
2006
, “
Standards for Performance of Combustion Turbines; Final Rule, Federal Register, 40 CFR 60—Part III
,” Environmental Protection Agency, Washington, DC, p.
38505
.
3.
European Union (Large Combustion Plants) Regulations
,
2012
, “
Statutory Instruments
,” European Union Regulations, Brussels, Belgium, S.I. No. 566.
4.
Goldmeer
,
J.
,
Vandervort
,
C.
, and
Sternberg
,
J.
,
2017
, “
New Capabilities and Developments in GE's DLN 2.6 Combustion System
,” Power-Gen International, Tulsa, OK.
5.
Goldmeer
,
J.
,
York
,
W.
, and
Glaser
,
P.
,
2017
, “
Fuel and Combustion System Capabilities of GE's F and HA Class Gas Turbines
,”
ASME
Paper No. GT2017-64588.
6.
Tripod
,
B.
,
Döbbeling
,
K.
,
Pfeiffer
,
C.
, and
Heimerl
,
R.
,
2012
, “
Increasing Power Generation Efficiency in Russia and CIS Countries Through Further Development of the Alstom GT13E2 Gas Turbine
,”
Russia Power 2012
, Moscow, Russia, Mar. 5–7.http://www.gastopower.co.uk/documents/Alstom%20Paper%202012-03%20Russia%20Power%20-%20%20Increasing%20PowerGen%20Effic%20in%20Russia%20%20CIS%20through%20further%20Dev%20of%20the%20GT13E2%20-%20Tripod%20Doebbeling%20Pfeifer%20Heimerl.pdf
7.
Jansohn
,
P.
,
Ruck
,
T.
,
Steinbach
,
C.
,
Knöpfel
,
H.-P.
,
Sattelmayer
,
T.
, and
Troger
,
C.
, “
Development of the Advanced EV (AEV) Burner for the ABB GTX100 Gas Turbine
,”
ASME
Paper No. 1997, 97-AA-139.
8.
Willert
,
C.
,
Stockhausen
,
G.
,
Voges
,
M.
,
Klinner
,
J.
,
Schodl
,
R.
,
Hassa
,
C.
,
Schuermans
,
B.
, and
Guethe
,
F.
,
2007
, “
Selected Applications of Planar Imaging Velocimetry in Combustion Test Facilities
,”
Topic of Applied Physics
, Vol. 112, Springer-Verlag, Berlin, pp. 283–309.
9.
Hubschmid
,
W.
,
Bombach
,
R.
,
Inauen
,
A.
,
Güthe
,
F.
,
Schenker
,
S.
,
Tylli
,
N.
, and
Kreutner
,
W.
,
2008
, “
Thermoacoustically Driven Flame Motion and Heat Release Variation in a Swirl-Stabilized Gas Turbine Burner Investigated by LIF and Chemiluminescence
,”
Exp. Fluids
,
45
(
1
), pp.
167
182
.
10.
Guyot
,
D.
,
Guethe
,
F.
, and
Schuermans
,
B.
, “
CH*/OH* Chemiluminescence Response of an Atmospheric Premixed Flame Under Varying Conditions
,”
ASME
Paper No. GT2010-23135.
11.
Schuermans
,
B.
,
Guethe
,
F.
,
Guyot
,
D.
,
Pennel
,
D.
, and
Paschereit
,
O. C.
,
2010
, “
Thermoacoustic Modeling of a Gas Turbine Using Transfer Functions Measured Under Full Engine Pressure
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
111503
.
12.
Zajadatz
,
M.
,
Pennell
,
D.
,
Bernero
,
S.
,
Paikert
,
B.
,
Zoli
,
R.
, and
Döbbeling
,
K.
,
2013
, “
Development and Implementation of the AEV Burner for the Alstom GT13E2
,”
ASME J. Eng. Gas Turbines Power
,
135
(
6
), p.
061503
.
13.
Bothien
,
M. R.
,
Pennell
,
D. A.
,
Zajadatz
,
M.
, and
Döbbeling
,
K.
,
2013
, “
On Key Features of the AEV Burner Engine Implementation for Operational Flexibility
,”
ASME
Paper No. GT2013-95693.
14.
Lantz
,
A.
,
Collin
,
R.
,
Aldén
,
M.
,
Lindholm
,
A.
,
Larfeldt
,
J.
, and
Lörstad
,
D.
,
2015
, “
Investigation of Hydrogen Enriched Natural Gas Flames in a SGT-700/800 Burner Using OH PLIF and Chemiluminescence Imaging
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031505
.
15.
Lörstad
,
D.
,
Ljung
,
A.
, and
Abou-Taouk
,
A.
,
2016
, “
Investigation of Siemens SGT-800 Industrial Gas Turbine Combustor Using Different Combustion and Turbulence Models
,”
ASME
Paper No. GT2016-57694.
16.
Wind
,
T.
,
Güthe
,
F.
, and
Syed
,
K.
,
2014
, “
Co-Firing of Hydrogen and Natural Gases in Lean Premix Conventional and Reheat Burners (Alstom GT26)
,”
ASME
Paper No. GT2014-25813.
17.
Donohoe
,
N.
,
Heufer
,
A.
,
Metcalfe
,
W. K.
,
Curran
,
H. J.
,
Brower
,
M. L.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Güthe
,
F.
,
2013
, “
Ignition Delay Time Experiments and Mechanism Validation for Natural Gas/Hydrogen Blends at Elevated Pressures
,”
Combust. Flame
,
161
(
6
), p.
1432
.
18.
Brower
,
M.
,
Petersen
,
E.
,
Metcalfe
,
W.
,
Curran
,
H.
,
Aluri
,
N.
,
Guethe
,
F.
,
Füri
,
M.
, and
Bourque
,
G.
,
2013
, “
Ignition Delay Time and Laminar Flame Speed Calculations for Natural Gas/Hydrogen Blends at Elevated Pressures
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021504
.
19.
Eoin
,
M.
,
Burke
,
F.
,
Güthe
., and
Rory
,
F. D. M.
,
2016
, “
A Comparison of Turbulent Flame Speed Correlations for Hydrocarbon Fuels at Elevated Pressures
,”
ASME
Paper No. GT2016-57804.
20.
Marikkar
,
N.
,
Vierling
,
M.
,
Aboujaib
,
M.
,
Sokolov
,
D.
,
Monetti
,
B.
,
Russell
,
R.
,
Meskers
,
D.
,
Verdy
,
C.
, and
Moliere
,
M.
,
2016
, “
Improving the Efficiency of Heavy-Fuelled Gas Turbines: The Successful Experience Achieved at the Yugadanavi 300 MW CCGT in Sri Lanka
,”
ASME
Paper No. GT2016-56531.
21.
Goldmeer
,
J.
,
Symonds
,
R.
,
Glaser
,
P.
,
Mohammad
,
B.
,
Nagel
,
Z.
, and
Perez-Diaz
,
P.
,
2014
, “
Evaluation of Arabian Super Light Crude Oil for Use in a F-Class DLN Combustion System
,”
ASME
Paper No. GT2014-25351.
22.
Blouch
,
J.
,
Li
,
H.
,
Mueller
,
M.
, and
Hook
,
R.
,
2011
, “
Fuel Flexibility in LM2500 and LM6000 Dry Low Emission Engines
,”
ASME
Paper No. GT2011-45387.
23.
Wisniewski
,
K. J.
, and
Handelsman
,
S.
,
2010
, “
Expanding Fuel Flexibility Capability in GE's Aeroderivative Engines
,”
ASME
Paper No. GT2010-23546.
24.
Lieuwen
,
T.
,
Mcdonell
,
V.
,
Santavicca
,
D.
, and
Sattelmayer
,
T.
,
2008
, “
Burner Development and Operability Issues Associated With Steady Flowing Syngas Fired Combustors
,”
Combust. Sci. Technol.
,
180
(
6
), p.
1169
.
25.
Mulik
,
P. R.
,
Singh
,
P. P.
, and
Cohn
,
A.
, “
Effect of Water Injection for NOx Reduction With Synthetic Liquid Fuels Containing High Fuel-Bound Nitrogen in a Gas Turbine Combustor
,”
ASME
Paper No. 81-GT-51.
26.
Ogunsola
,
O.
, and
Herath
,
B.
, “
Use of Multivariate Analysis to Determine the Influence of Some Liquid-Fuel Properties on Fuel-Bound Nitrogen-to-NOx Conversion
,”
Fuel
,
69
(
12
), pp.
1465
1592
.
27.
Gregory
,
P.
,
Smith
,
D. M.
,
Golden
,
Michael
,
F.
,
Nigel
,
W. M.
,
Boris
,
E.
,
Mikhail Goldenberg
,
C.
,
Thomas
,
B.
,
Ronald K
,
H.
,
Soonho
,
S.
,
William
,
C. G.
, Jr.,
Vitali
,
V. L.
,
Zhiwei
, and
Qin
, 2018, “
GRI-MECH 3.0
,” http://www.me.berkeley.edu/gri_mech/
28.
Mathieu
,
O.
,
Petersen
,
E. L.
,
Heufer
,
A.
,
Donohoe
,
N.
,
Metcalfe
,
W.
,
Curran
,
H. J.
,
Güthe
,
F.
, and
Bourque
,
G.
,
2014
, “
Numerical Study on the Effect of Real Syngas Compositions on Ignition Delay Times and Laminar Flame Speeds at Gas Turbine Conditions
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011502
.
29.
Bugler
,
J.
,
Somers
,
K. P.
,
Simmie
,
J. M.
,
Güthe
,
F.
, and
Curran
,
H. J.
,
2016
, “
Modeling Nitrogen Species as Pollutants: Thermochemical Influences
,”
J. Phys. Chem. A
,
120
(
36
), p.
7192
.
You do not currently have access to this content.