The wind industry needs airfoil data for ranges of angle of attack (AoA) much wider than those of aviation applications, since large portions of the blades may operate in stalled conditions for a significant part of their lives. Vertical axis wind turbines (VAWTs) are even more affected by this need, since data sets across the full incidence range of 180 deg are necessary for a correct performance prediction at different tip-speed ratios. However, the relevant technical literature lacks data in deep and poststall regions for nearly every airfoil. Within this context, the present study shows experimental and numerical results for the well-known NACA 0021 airfoil, which is often used for Darrieus VAWT design. Experimental data were obtained through dedicated wind tunnel measurements of a NACA 0021 airfoil with surface pressure taps, which provided further insight into the pressure coefficient distribution across a wide range of AoAs. The measurements were conducted at two different Reynolds numbers (Re = 140 k and Re = 180 k): each experiment was performed multiple times to ensure repeatability. Dynamic AoA changes were also investigated at multiple reduced frequencies. Moreover, dedicated unsteady numerical simulations were carried out on the same airfoil shape to reproduce both the static polars of the airfoil and some relevant dynamic AoA variation cycles tested in the experiments. The solved flow field was then exploited both to get further insight into the flow mechanisms highlighted by the wind tunnel tests and to provide correction factors to discard the influence of the experimental apparatus, making experiments representative of open-field behavior. The present study is then thought to provide the scientific community with high quality, low-Reynolds airfoil data, which may enable in the near future a more effective design of Darrieus VAWTs.

References

1.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained
, 2nd ed.,
Wiley
, Chichester,
UK
.
2.
Simão Ferreira
,
C.
,
Aagaard Madsen
,
H.
,
Barone
,
M.
,
Roscher
,
B.
,
Deglaire
,
P.
, and
Arduin
,
I.
,
2014
, “
Comparison of Aerodynamic Models for Vertical Axis Wind Turbines
,”
J. Phys.: Conf. Ser.
, 524, p.
012125
.
3.
Marten
,
D.
,
Wendler
,
J.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
QBlade: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines
,”
Int. J. Emerging Technol. Adv. Eng.
,
3
(
SI 3
), pp.
264
269
.https://ijetae.com/files/Conference%20ICERTSD-2013/IJETAE_ICERTSD_0213_41.pdf
4.
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Marten
,
D.
,
Nayeri
,
C.
, and
Paschereit
,
C. O.
,
2015
, “
A Review of Wind Turbine Polar Data and Its Effect on Fatigue Loads Simulation Accuracy
,”
ASME
Paper No. GT2015-43249.
5.
Marten
,
D.
,
Bianchini
,
A.
,
Pechlivanoglou
,
G.
,
Balduzzi
,
F.
,
Nayeri
,
C. N.
,
Ferrara
,
G.
,
Paschereit
,
C. O.
, and
Ferrari
,
L.
,
2016
, “
Effects of Airfoil's Polar Data in the Stall Region on the Estimation of Darrieus Wind Turbines Performance
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
0226069
.
6.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rainbird
,
J.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines—Part 1: Flow Curvature Effects
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032602
.
7.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rainbird
,
J.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines—Part 2: Post-Stall Data Extrapolation Methods
,”
ASME
Paper No. GT2015-42285.
8.
Holst
,
D.
,
Church
,
B.
,
Pechlivanoglou
,
G.
,
Tüzüner
,
E.
,
Saverin
,
J.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2018
, “
Experimental Analysis of a NACA 0021 Airfoil Section Through 180-Degree Angle of Attack at Low Reynolds Numbers for Use in Wind Turbine Analysis
,”
ASME J. Eng. Gas Turbines Power
(accepted).
9.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design With Emphasis on Darrieus Concept
,
Polytechnic International Press
,
Montreal, QC, Canada
.
10.
Dominy
,
R.
,
Lunt
,
P.
,
Bickerdyke
,
A.
, and
Dominy
,
J.
,
2007
, “
Self-Starting Capability of a Darrieus Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
1
), pp.
111
120
.
11.
Sheldahl
,
R. E.
, and
Klimas
,
P. C.
,
1981
, “
Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. SAND80-2114.
12.
Rainbird
,
J.
,
Peiro
,
J.
, and
Graham
,
J. M. R.
,
2015
, “
Post-Stall Airfoil Performance and Vertical-Axis Wind Turbines
,”
AIAA
Paper No. 2015-0720.
13.
Rainbird
,
J.
,
Bianchini
,
A.
,
Balduzzi
,
F.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
On the Influence of Virtual Camber Effect on Airfoil Polars for Use in Simulations of Darrieus Wind Turbines
,”
Energy Convers. Manage.
,
106
, pp.
373
384
.
14.
Du
,
L.
,
Berson
,
A.
, and
Dominy
,
R. G.
,
2014
, “
NACA0018 Behaviour at High Angles of Attack and at Reynolds Numbers Appropriate for Small Wind Turbines
,” School of Engineering and Computing Sciences, Durham University, Durham, UK, ECS Technical Report No. 2014/08.
15.
Ostowari
,
C.
, and
Naik
,
D.
,
1984
, “
Post-Stall Wind Tunnel Data for NACA 44XX Series Airfoil Sections
,” Solar Energy Research Institute, Golden, CO, Technical Report No.
SERI/STR-217-2559
. https://www.nrel.gov/docs/legosti/old/2559.pdf
16.
Linn
,
A. B.
,
1999
, “
Determination of Average Lift of a Rapidly Pitching Airfoil
,” M.Sc. thesis, Worcester Polytechnic Institute, Worcester, MA.
17.
Fujisawa
,
N.
, and
Shibuya
,
S.
,
2001
, “
Observations of Dynamic Stall on Darrieus Wind Turbine Blades
,”
J. Wind Eng. Ind. Aerodyn.
,
84
(
2
), pp.
201
214
.
18.
Laneville
,
A.
, and
Vittecoq
,
P.
,
1986
, “
Dynamic Stall; the Case of the Vertical Axis Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
108
, pp.
140
145
.
19.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Analysis of Dynamic Stall Models in Low-Order Simulation Models for Vertical-Axis Wind Turbines
,”
Energy Procedia
,
101
, pp.
488
495
.
20.
Dossena
,
V.
,
Persico
,
G.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Dell'Anna
,
S.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2015
, “
An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051207
.
21.
Holst
,
D.
,
Church
,
B.
,
Wegner
,
F.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2018
, “
Experimental Analysis of a NACA 0021 Airfoil Under Dynamic Angle of Attack Variation and Low Reynolds Numbers
,”
ASME J. Eng. Gas Turbines Power
(accepted).
22.
Holst
,
D.
,
Thommes
,
K.
,
Schönlau
,
M.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2016
, “
Entwicklung eines aerodynamischen Prüfstands zur Flügelprofiluntersuchung von Kleinwindkraftanlagen unter dynamischen Winkeländerungen auf Basis eines cRIO-9068
,” R. Jamal and R. Heinze, eds., VDE VERLAG, Berlin, Germany, pp.
54
57
.
23.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
You do not currently have access to this content.