The introduction of the tilting pad journal bearing (TPJB) technology has allowed the achievement of important goals regarding turbomachinery efficiency in terms of high peripheral speed, enhanced power density, higher efficiency, and tolerated loads. That kind of technology overcomes the typical dynamic instability problem that affects fixed geometry bearings but, under certain working conditions, can be subjected to thermal instability phenomena, which are particularly significant at high peripheral speeds. In this work, the authors propose an innovative iterative procedure to forecast the thermal instability onset by using two coupled models, a thermo-structural one and a fluid dynamic one. The first one calculates the vibrations and the deformations due both to the external forces and to the temperature distribution applied on the rotor. The fluid dynamic model calculates the temperature profile by using as inputs the characteristics of the rotor, of the bearing and of the orbits, obtained by the thermos-structural code. After a general description of the iterative procedure is given, details of each tool are provided. Code validation is presented by means of comparison with available experimental and numerical data. Finally, the results of the iterative procedure are shown to prove its potential in forecasting instability thresholds. The model has shown a good trade-off between accuracy and efficiency, which is very critical when dealing with the extended time windows characterizing thermal instabilities. This research activity is in cooperation with the industrial partner Baker Hughes, a GE company, which provided the experimental data obtained thorough a dedicated experimental campaign.

References

References
1.
De Jongh
,
F. M.
, and
Morton
,
P. G.
,
1996
, “
The Synchronous Instability of a Compressor Rotor Due to Bearing Journal Differential Heating
,”
ASME. J. Eng. Gas Turbines Power
,
118
(
4
), pp.
816
824
.
2.
Tong
,
X.
,
Palazzolo
,
A.
, and
Suh
,
J.
,
2017
, “
A Review of the Rotordynamic Thermally Induced Synchronous Instability (Morton) Effect
,”
ASME. Appl. Mech. Rev.
,
69
(
6
), p.
060801
.
3.
Tong
,
X.
, and
Palazzolo
,
A.
,
2017
, “
Measurement and Prediction of the Journal Circumferential Temperature Distribution for the Rotordynamic Morton Effect
,”
ASME. J. Tribol.
,
140
(
3
), p.
031702
.
4.
Gomiciaga
,
R.
, and
Keogh
,
P. S.
,
1999
, “
Orbit Induced Journal Temperature Variation in Hydrodynamic Bearings
,”
ASME J. Tribol.
,
121
(
1
), pp.
77
84
.
5.
Balbahadur
,
A. C.
, and
Kirk
,
R. G.
,
2002
, “
Part I—Theoretical Model for a Synchronous Thermal Instability Operating in Overhung Rotors
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
469
475
.
6.
Balbahadur
,
A. C.
, and
Kirk
,
R. G.
,
2002
, “
Case Studies for a Synchronous Thermal Instability Operating in Overhung Rotors—Part II
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
477
487
.
7.
Murphy
,
B. T.
, and
Lorenz
,
J. A.
,
2009
, “
Simplified Morton Effect Analysis for Synchronous Spiral Instability
,”
ASME
Paper No. POWER2009-81030.
8.
Lorenz
,
J. A.
, and
Murphy
,
B. T.
,
2011
, “
Case Study of Morton Effect Shaft Differential Heating in a Variable-Speed Rotating Electric Machine
,”
ASME
Paper No. GT2011-45228.
9.
Childs
,
D. W.
, and
Saha
,
R.
,
2012
, “
A New, Iterative, Synchronous-Response Algorithm for Analyzing the Morton Effect
,”
ASME. J. Eng. Gas Turbines Power
,
134
(
7
), p.
072501
.
10.
Tong
,
X.
,
Palazzolo
,
A.
, and
Suh
,
J.
,
2016
, “
Rotordynamic Morton Effect Simulation With Transient, Thermal Shaft Bow
,”
ASME. J. Tribol.
,
138
(
3
), p.
031705
.
11.
Lee
,
J. G.
, and
Palazzolo
,
A.
,
2012
, “
Morton Effect Cyclic Vibration Amplitude Determination for Tilt Pad Bearing Supported Machinery
,”
ASME J. Tribol.
,
135
(
1
), p.
011701
.
12.
Grigorev
,
B. S.
,
Fedorov
,
A. E.
, and
Schmied
,
J.
,
2015
, “
New Mathematical Model for the Morton Effect Based on the THD Analysis
,” Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, Springer, Cham, Switzerland, pp. 2243–2253.
13.
Panara
,
D.
,
Baldassare
,
L.
,
Griffini
,
D.
,
Mattana
,
A.
,
Panconi
,
S.
, and
Meli
,
E.
,
2015
, “
Numerical Prediction and Experimental Validation of Rotor Thermal Instability
,”
44th Turbomachinery Symposium
, College Station, TX, Sept. 14–16, pp.
1
18
.http://oaktrust.library.tamu.edu/handle/1969.1/162126
14.
Song
,
Y.
, and
Gu
,
C.-W.
,
2015
, “
Development and Validation of a Three-Dimensional Computational Fluid Dynamics Analysis for Journal Bearings Considering Cavitation and Conjugate Heat Transfer
,”
ASME J. Eng. Gas Turbines Power
,
137
(
12
), p.
122502
.
15.
Griffini
,
D.
,
Insinna
,
M.
,
Salvadori
,
S.
,
Barucci
,
A.
,
Cosi
,
F.
,
Pelli
,
S.
, and
Righini
,
G. C.
,
2017
, “
On the CFD Analysis of a Stratified Taylor-Couette System Dedicated to the Fabrication of Nanosensors
,”
Fluids
,
2
(
1
), p.
8
.
16.
Griffini
,
D.
,
Insinna
,
M.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2015
, “
Clocking Effects of Inlet Non-Uniformities in a Fully Cooled High-Pressure Vane: A Conjugate Heat Transfer Analysis
,”
ASME J. Turbomach.
,
138
(
2
), p.
021006
.
17.
Andreini
,
A.
,
Facchini
,
B.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2016
, “
Hybrid RANS-LES Modeling of the Aerothermal Field in an Annular Hot Streak Generator for the Study of Combustor–Turbine Interaction
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021508
.
18.
Bontempo
,
R.
, and
Manna
,
M.
,
2016
, “
Analysis and Evaluation of the Momentum Theory Errors as Applied to Propellers
,”
AIAA J.
,
54
(
12
), pp.
3840
3848
.
19.
Bontempo
,
R.
, and
Manna
,
M.
,
2017
, “
Highly Accurate Error Estimate of the Momentum Theory as Applied to Wind Turbines
,”
Wind Energy
,
20
(8), pp. 1405–1419.
20.
Montomoli
,
F.
,
Amirante
,
D.
,
Hills
,
N.
,
Shahpar
,
S.
, and
Massini
,
M.
,
2014
, “
Uncertainty Quantification, Rare Events, and Mission Optimization: Stochastic Variations of Metal Temperature During a Transient
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
042101
.
21.
Griffini
,
D.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2016
, “
Thermo-Hydrodynamic Analysis of Plain and Tilting Pad Bearings
,”
Energy Procedia
, 101, pp. 2–9.
22.
Martelli
,
F.
, and
Manfrida
,
G.
,
1978
, “
Some Applications of Finite Element Technique in Journal Bearing Hydrodynamics
,”
Conference Proceedings on Numerical Methods in Laminar and Turbulent Flows
, University College, Swansea, UK
23.
Reddi
,
M. M.
,
1969
, “
Finite Element Solution of the Incompressible Lubrication Problem
,”
ASME J. Lubr. Technol.
,
91
(3), pp.
524
533
.
24.
Frene
,
J.
,
Nicholas
,
D.
,
Degueurce
,
B.
,
Berthe
,
D.
, and
Godet
,
M.
, 1997,
Hydrodynamic Lubrication—Bearings and Thrust Bearings
, Vol.
33
,
Elsevier
,
Amsterdam, The Netherlands
.
25.
Constantinescu
,
V. N.
, and
Galetuse
,
S.
,
1965
, “
On the Determination of Friction Forces in Turbulent Lubrication
,”
ASLE Trans.
,
8
(
4
), p.
367
.
26.
Deng
,
D.
,
2007
, “
A Numerical and Experimental Investigation of Taylor Flow Instabilities in Narrow Gaps and Their Relationship to Turbulent Flow in Bearings
,”
Ph.D. thesis
, University of Akron, Akron, OH.https://etd.ohiolink.edu/rws_etd/document/get/akron1185559974/inline
27.
Hirs
,
G. G.
,
1973
, “
A Bulk-Flow Theory for Turbulence in Lubricant Films
,”
ASME. J. Lubr. Technol.
,
95
(
2
), pp.
137
145
.
28.
Lund
,
J. W.
,
1964
, “
Spring and Damping Coefficients for the Tilting-Pad Journal Bearing
,”
ASLE Trans.
,
7
(
4
), pp. 342–352.
29.
Someya
,
T.
,
Mitsui
,
J.
,
Esaki
,
J.
,
Saito
,
S.
,
Kanemitsu
,
Y.
,
Iwatsubo
,
T.
,
Tanaka
,
M.
,
Hisa
,
S.
,
Fujikawa
,
T.
, and
Kanki
,
H.
,
1989
,
Journal-Bearing Databook
, Someya, T., ed.,
Springer-Verlag
,
Berlin
.
30.
Balbahadur
,
A. C.
,
2001
, “
Thermoelastohydrodynamic Model for the Morton Effect Operating in Overhung Rotors Supported by Plain or Tilting Pad Journal Bearings
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
31.
Schmied
,
J. S.
,
Pozivil
,
J.
, and
Walch
,
J.
,
2008
, “
Hot Spots in Turboexpander Bearings: Case History, Stability Analysis, Measurements and Operational Experience
,”
ASME
Paper No. GT2008-51179.
32.
API,
2002
, “
Axial and Centrifugal Compressors and Expander-Compressors for Petroleum, Chemical and Gas Industry Services
,” American Petroleum Institute, Washington, DC, Standard No. 617.
You do not currently have access to this content.