In this paper, the nonlinear vibrations of rotating beams with large displacements are investigated by the use of the co-rotational (C-R) finite element method. In the C-R approach, the full motion is decomposed into a rigid body part and a pure deformational part by introducing a local coordinate system attached to the element. The originality we propose in this study is to derive its formulation in a rotating reference frame and include both centrifugal and gyroscopic effects. The nonlinear governing equations are obtained from Lagrange's equations using a consistent expression for the kinetic energy. With this formulation, the spin-stiffening effect from geometrical nonlinearities due to large displacements is accurately handled. The proposed approach is then applied to several types of mechanical analysis (static large deformation, modal analysis at different spin speeds, and transient analysis after an impulsive force) to verify its accuracy and demonstrate its efficiency.

References

1.
Thomas
,
O.
,
Sénéchal
,
A.
, and
Deü
,
J.-F.
,
2016
, “
Hardening/Softening Behavior and Reduced Order Modeling of Nonlinear Vibrations of Rotating Cantilever Beams
,”
Nonlinear Dyn.
,
86
(
2
), pp.
1293
1318
.
2.
Stoykov
,
S.
, and
Ribeiro
,
P.
,
2013
, “
Vibration Analysis of Rotating 3D Beams by the p-Version Finite Element Method
,”
Finite Elem. Anal. Des.
,
65
, pp.
76
88
.
3.
Bauchau
,
O. A.
, and
Hong
,
C.-H.
,
1987
, “
Finite Element Approach to Rotor Blade Modeling
,”
J. Am. Helicopter Soc.
,
32
(
1
), pp.
60
67
.
4.
Vinod
,
K.
,
Gopalakrishnan
,
S.
, and
Ganguli
,
R.
,
2007
, “
Free Vibration and Wave Propagation Analysis of Uniform and Tapered Rotating Beams Using Spectrally Formulated Finite Elements
,”
Int. J. Solids Struct.
,
44
(
18–19
), pp.
5875
5893
.
5.
Bekhoucha
,
F.
,
Rechak
,
S.
,
Duigou
,
L.
, and
Cadou
,
J.-M.
,
2013
, “
Nonlinear Forced Vibrations of Rotating Anisotropic Beams
,”
Nonlinear Dyn.
,
74
(
4
), pp.
1281
1296
.
6.
Le
,
T.-N.
,
Battini
,
J.-M.
, and
Hjiaj
,
M.
,
2011
, “
Efficient Formulation for Dynamics of Corotational 2D Beams
,”
Comput. Mech.
,
48
(
2
), pp.
153
161
.
7.
Iura
,
M.
,
Suetake
,
Y.
, and
Atluri
,
S.
,
2003
, “
Accuracy of Co-Rotational Formulation for 3-D Timoshenko's Beam
,”
Comput. Model. Eng. Sci.
,
4
(
2
), pp.
249
258
.
8.
Iura
,
M.
, and
Atluri
,
S.
,
2003
, “
Advances in Finite Rotations in Structural Mechanics
,”
Comput. Model. Eng. Sci.
,
4
(
2
), pp.
213
216
.
9.
Felippa
,
C. A.
, and
Haugen
,
B.
,
2005
, “
A Unified Formulation of Small-Strain Corotational Finite Elements—I: Theory
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
21–24
), pp.
2285
2335
.
10.
Masashi
,
I.
,
1994
, “
Effects of Coordinate System on the Accuracy of Corotational Formulation for Bernoulli-Euler's Beam
,”
Int. J. Solids Struct.
,
31
(
20
), pp.
2793
2806
.
11.
Battini
,
J.-M.
,
2002
, “
Co-Rotational Beam Elements in Instability Problems
,” Ph.D. thesis, KTH, Stockholm, Sweden.
12.
Crisfield
,
M. A.
,
1997
, Non-Linear Finite Element Analysis of Solids and Structures, Volume 2: Advanced Topics, Wiley, Hoboken, NJ.
13.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model—Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.
14.
Dufva
,
K.
,
Sopanen
,
J.
, and
Mikkola
,
A.
,
2005
, “
A Two-Dimensional Shear Deformable Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
,
280
(
3–5
), pp.
719
738
.
15.
Crisfield
,
M. A.
,
1990
, “
A Consistent Co-Rotational Formulation for Non-Linear, Three-Dimensional, Beam-Elements
,”
Comput. Methods Appl. Mech. Eng.
,
81
(
2
), pp.
131
150
.
16.
Omar
,
M.
, and
Shabana
,
A.
,
2001
, “
A Two-Dimensional Shear Deformable Beam for Large Rotation and Deformation Problems
,”
J. Sound Vib.
,
243
(
3
), pp.
565
576
.
17.
Hodges
,
D. Y.
, and
Rutkowski
,
M. Y.
,
1981
, “
Free-Vibration Analysis of Rotating Beams by a Variable-Order Finite-Element Method
,”
AIAA J.
,
19
(
11
), pp.
1459
1466
.
18.
Banerjee
,
J.
,
2000
, “
Free Vibration of Centrifugally Stiffened Uniform and Tapered Beams Using the Dynamic Stiffness Method
,”
J. Sound Vib.
,
233
(
5
), pp.
857
875
.
19.
Gan
,
B. S.
,
2017
,
An Isogeometric Approach to Beam Structures: Bridging the Classical to Modern Technique
,
Springer
,
Cham, Switzerland
.
20.
Przemieniecki
,
J. S.
,
1985
,
Theory of Matrix Structural Analysis
,
Courier Corporation
,
North Chelmsford, MA
.
You do not currently have access to this content.