Impingement cooling is commonly employed in gas turbines to control the turbine tip clearance. During the design phase, computational fluid dynamics (CFD) is an effective way of evaluating such systems but for most turbine case cooling (TCC) systems resolving the small scale and large number of cooling holes is impractical at the preliminary design phase. This paper presents an alternative approach for predicting aerodynamic performance of TCC systems using a “smart” porous media (PM) to replace regions of cooling holes. Numerically CFD defined correlations have been developed, which account for geometry and local flow field, to define the PM loss coefficient. These are coded as a user-defined function allowing the loss to vary, within the calculation, as a function of the predicted flow and hence produce a spatial variation of mass flow matching that of the cooling holes. The methodology has been tested on various geometrical configurations representative of current TCC systems and compared to full cooling hole models. The method was shown to achieve good overall agreement while significantly reducing both the mesh count and the computational time to a practical level.

References

References
1.
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2004
, “
High-Pressure Turbine Engine Clearance Control Systems: Current Practices and Future Directions
,”
AIAA J. Propul. Power
,
20
(
2
), pp.
302
311
.
2.
Lattime
,
S. B.
,
Steinetz
,
B. M.
, and
Robbie
,
M. G.
,
2005
, “
Test Rig for Evaluating Active Turbine Blade Tip Clearance Control Concepts
,”
AIAA J. Propul. Power
,
21
(
3
), pp.
552
563
.
3.
Melcher
,
K. J.
, and
Kypuros
,
J. A.
,
2003
, “
Towards a Fast-Response Active Turbine Tip Clearance Control
,” NAAA Center for Aerospace Information, Hanover, MD, Report No.
NASA/TM-2003-212627/REV1
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040031316.pdf
4.
Andreini
,
A.
,
Soghe
,
R. D.
,
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Coutandin
,
D.
,
2013
, “
Experimental and Numerical Analysis of Multiple Impingement Jet Arrays for an Active Clearance Control System
,”
ASME J. Turbomach.
,
135
(
3
), p.
031016
.
5.
Miller
,
D. S.
,
1990
,
Internal Fluid Systems
,
2nd ed.
, British Hydromechanics Research Association, Cranfield, UK, pp.
92
94
.
6.
Laxmi
,
K. M.
,
Kumar
,
V. R.
, and
Rao
,
Y. V. H.
,
2013
, “
Modelling and Simulation of Gas Flow Velocity in Catalytic Converter With Porous
,”
Int. J. Eng. Res. Appl.
,
3
(
3
), pp.
518
522
.http://www.ijera.com/papers/Vol3_issue3/CJ33518522.pdf
7.
Pitsh
,
S.
,
Holmberg
,
S.
, and
Angster
,
J.
,
2010
, “
Ventilation System Design for a Church Pipe Organ Using Numerical Simulation and On-Site Measurement
,”
Build. Environ.
,
45
(
12
), pp.
2629
2643
.
8.
Alshare
,
A. A.
,
Simon
,
T. W.
, and
Strykowski
,
P. J.
,
2010
, “
Simulations of Flow and Heat Transfer in a Serpentine Heat Exchanger Having Dispersed Resistance With Porous-Continuum and Continuum Models
,”
Int. J. Heat Mass Transfer
,
53
(
5/6
), pp.
1088
1099
.
9.
Missirlis
,
D.
,
Yakinthos
,
K.
,
Storm
,
P.
, and
Goulas
,
A.
,
2007
, “
Modelling Pressure Drop of Inclined Flow Through a Heat Exchanger for Aero-Engine Applications
,”
Int. J. Heat Fluid Flow
,
28
(
3
), pp.
512
515
.
10.
Patursson
,
Ø.
,
Swift
,
M. R.
,
Tsukrov
,
I.
,
Simonsen
,
K.
,
Baldwin
,
K.
,
Fredriksson
,
D. W.
, and
Celikkol
,
B.
,
2010
, “
Development of a Porous Media Model With Application to Flow Through and Around a Net Panel
,”
Ocean Eng.
,
37
(
2–3
), pp.
314
324
.
11.
Vasilic
,
K.
,
Meng
,
B.
,
Kühne
,
H. C.
, and
Roussel
,
N.
,
2011
, “
Flow of Fresh Concrete Through Steel Bars: A Porous Medium Analogy
,”
Cem. Concr. Res.
,
41
(
5
), pp.
496
503
.
12.
Ford
,
C. L.
,
Carrotte
,
J. F.
, and
Walker
,
A. D.
,
2013
, “
The Application of Porous Media to Simulate the Upstream Effects of Gas Turbine Injector Swirl Vanes
,”
Comput. Fluids
,
77
, pp.
143
151
.
13.
Pruthviraj
,
U.
,
Yaragal
,
S. C.
, and
Nagaraj
,
M. K.
,
2013
, “
Numerical Prediction of Air Flow Through Perforated Plates on Flat Surface
,”
Int. J. Innovative Res. Sci. Eng. Technol.
,
2
(
7
), pp.
2863
2869
.http://www.rroij.com/open-access/numerical-prediction-of-air-flow-through-perforated-plates-on-flat-surface.pdf
14.
Hwang
,
J. J.
, and
Cheng
,
C. S.
,
2001
, “
Impingement Cooling in Triangular Ducts Using an Array of Side-Entry Wall Jets
,”
Int. J. Heat Mass Transfer
,
44
(
5
), pp.
1053
1063
.
15.
Rowbury
,
D. A.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
,
2001
, “
A Method for Correlating the Influence of External Crossflow on the Discharge Coefficients of Film Cooling Holes
,”
ASME J. Turbomach.
,
123
(
2
), pp.
258
265
.
16.
Chi
,
Z.
,
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H.
,
2013
, “
Experimental and Numerical Study of the Anti-Crossflows Impingement Cooling Structure
,”
Int. J. Heat Mass Transfer
,
64
, pp.
567
580
.
17.
Bailey
,
J. C.
,
Intile
,
J.
,
Fric
,
T. F.
,
Tolpadi
,
A. K.
,
Nirmalan
,
N. V.
, and
Bunker
,
R. S.
,
2003
, “
Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
125
(
4
), pp.
994
1002
.
18.
Spring
,
S.
,
Lauffer
,
D.
,
Weigand
,
B.
, and
Hase
,
M.
,
2010
, “
Experimental and Numerical Investigation of Impingement Cooling in a Combustor Liner Heat Shield
,”
ASME J. Turbomach.
,
132
(
1
), p.
011003
.
19.
Da Soghe
,
R.
, and
Andreini
,
A.
,
2013
, “
Numerical Characterization of Pressure Drop Across the Manifold of Turbine Casing Cooling System
,”
ASME J. Turbomach.
,
135
(
3
), p.
031017
.
20.
ANSYS Fluent
,
2013
, “
ANSYS Fluent User's Guide r15
,”
Chapter 6: Cell Zone and Boundary Conditions
, ANSYS, Canonsburg, PA, pp.
223
247
.
21.
Hoque
,
M. M.
,
Alam
,
M. M.
,
Ferdows
,
M.
, and
Beg
,
O. A.
,
2013
, “
Numerical Simulation of Dean Number and Curvature Effects on Magneto-Biofluid Flow Through a Curved Conduit
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
11
), pp.
1155
1170
.
You do not currently have access to this content.