This paper furthers recent research by these authors. The starting point is the pre-optimization of solid dampers, which ensures that all dampers bound to “misbehave” are excluded since the early design stage. The authors now enlarge the scope of their investigations to explore those damper configurations selected inside the admissible design area. The purpose of the paper is to present a set of criteria apt to select a damper configuration which not only avoids unwanted situations, but in addition guarantees high performance under different design conditions. The analysis starts with the definition of a set of requirements a high performance damper should meet. In detail, the present investigation seeks to answer the following questions: in the low excitation regime, what is the frequency shift and the stiffening effect each damper can provide? for increasing excitation levels, which damper will start slipping sooner? in the high excitation regime, which damper provides the maximum dissipation? Like pre-optimization, it does not involve nonlinear finite element calculations, and unlike existing optimization procedures, is not linked to a specific set of blades the damper may be coupled to. The numerical prediction of the blade-damper coupled dynamics is here used only for validation purposes. The approach on which this paper rests is fully numerical; however, real contact parameters are taken from extensive experimental investigations made possible by those purposely developed test rigs which are the distinctive mark of the AERMEC Lab of Politecnico di Torino.

References

References
1.
Griffin
,
J.
,
1980
, “
Friction Damping of Resonant Stresses in Gas Turbine Engine Airfoils
,”
ASME J. Eng. Power
,
102
(
2
), p.
329
.
2.
Srinivasan
,
A.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
742
775
.
3.
Sextro
,
W.
,
Popp
,
K.
, and
Wolter
,
I.
,
1997
, “
Improved Reliability of Bladed Disks Due to Friction Dampers
,”
ASME
Paper No. 97-GT-189.
4.
Koh
,
K.
,
Griffin
,
J. H.
,
Filippi
,
S.
, and
Akay
,
A.
,
2005
, “
Characterization of Turbine Blade Friction Dampers
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
856
862
.
5.
Petrov
,
E.
, and
Ewins
,
D.
,
2006
, “
Effects of Damping and Varying Contact Area at Blade-Disk Joints in Forced Response Analysis of Bladed Disk Assemblies
,”
ASME J. Turbomach.
,
128
(
2
), pp.
403
410
.
6.
Berruti
,
T.
, and
Maschio
,
V.
,
2012
, “
Experimental Investigation on the Forced Response of a Dummy Counter-Rotating Turbine Stage With Friction Damping
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p. 122502.
7.
Krack
,
M.
,
Herzog
,
A.
,
von Scheidt
,
L. P.
,
Wallaschek
,
J.
,
Siewert
,
C.
, and
Hartung
,
A.
,
2012
, “
Multiharmonic Analysis and Design of Shroud Friction Joints of Bladed Disks Subject to Microslip
,”
ASME
Paper No. DETC2012-70184.
8.
Cameron
,
T.
, and
Griffin
,
J.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.
9.
Cardona
,
A.
,
Coune
,
T.
,
Lerusse
,
A.
, and
Geradin
,
M.
,
1994
, “
A Multiharmonic Method for Nonlinear Vibration Analysis
,”
Int. J. Numer. Methods Eng
,,
37
(
9
), pp.
1593
1608
.
10.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
11.
Petrov
,
E.
,
2011
, “
A High-Accuracy Model Reduction for Analysis of Nonlinear Vibrations in Structures With Contact Interfaces
,”
ASME J. Eng. Gas Turbines Power
,
133
(
10
), p.
102503
.
12.
Zucca
,
S.
,
2016
, “
On the Dual Craig–Bampton Method for the Forced Response of Structures With Contact Interfaces
,”
Nonlinear Dyn.
,
87
(
4
), pp.
2445
2455
.
13.
Yang
,
B.
, and
Menq
,
C.
,
1998
, “
Characterization of 3D Contact Kinematics and Prediction of Resonant Response of Structures Having 3D Frictional Constraint
,”
J. Sound Vib.
,
217
(
5
), pp.
909
925
.
14.
Petrov
,
E.
, and
Ewins
,
D.
,
2003
, “
Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Disks
,”
ASME J. Turbomach.
,
125
(
2
), pp.
364
371
.
15.
Nacivet
,
S.
,
Pierre
,
C.
,
Thouverez
,
F.
, and
Jezequel
,
L.
,
2003
, “
A Dynamic Lagrangian Frequency–Time Method for the Vibration of Dry-Friction-Damped Systems
,”
J. Sound Vib.
,
265
(
1
), pp.
201
219
.
16.
Gastaldi
,
C.
, and
Gola
,
M.
,
2016
, “
On the Relevance of a Microslip Contact Model for Under-Platform Dampers
,”
Int. J. Mech. Sci.
,
115–116
, pp.
145
156
.
17.
Pesaresi
,
L.
,
Armand
,
J.
,
Schwingshackl
,
C. W.
, and
Wong
,
C.
,
2017
, “
An Advanced Underplatform Damper Modelling Approach Based on a Microslip Contact Model
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(
ISROMAC
), Maui, HI, Dec. 16–17, pp.
1
10
https://www.researchgate.net/publication/320353664_An_advanced_underplatform_damper_modelling_approach_based_on_a_microslip_contact_model.
18.
Szwedowicz
,
J.
,
Sextro
,
W.
,
Visser
,
R.
, and
Masserey
,
P. A.
,
2003
, “
On Forced Vibration of Shrouded Turbine Blades
,”
ASME
paper No. GT2003-38808.
19.
Szwedowicz
,
J.
,
Gibert
,
C.
,
Sommer
,
T. P.
, and
Kellerer
,
R.
,
2008
, “
Numerical and Experimental Damping Assessment of a Thin-Walled Friction Damper in the Rotating Setup With High Pressure Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p. 012502.
20.
Schwingshackl
,
C.
,
Petrov
,
E.
, and
Ewins
,
D.
,
2012
, “
Effects of Contact Interface Parameters on Vibration of Turbine Bladed Disks With Underplatform Dampers
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p. 032507.
21.
Gastaldi
,
C.
, and
Gola
,
M.
,
2015
, “
A Random Sampling Strategy for Tuning Contact Parameters of Underplatform Dampers
,”
ASME
Paper No. GT2015-42834.
22.
Panning
,
L.
,
Sextro
,
W.
, and
Popp
,
K.
,
2000
, “
Optimization of Interblade Friction Damper Design
,”
ASME
Paper No. 2000-GT-0541.
23.
Panning
,
L.
,
Sextro
,
W.
, and
Popp
,
K.
,
2002
, “
Optimization of the Contact Geometry Between Turbine Blades and Underplatform Dampers With Respect to Friction Damping
,”
ASME
Paper No. GT2002-30429.
24.
Panning
,
L.
,
Popp
,
K.
,
Sextro
,
W.
,
Götting
,
F.
,
Kayser
,
A.
, and
Wolter
,
I.
,
2004
, “
Asymmetrical Underplatform Dampers in Gas Turbine Bladings: Theory and Application
,”
ASME
Paper No. GT2004-53316.
25.
Berruti
,
T.
,
Firrone
,
C.
,
Pizzolante
,
M.
, and
Gola
,
M.
,
2007
, “
Fatigue Damage Prevention on Turbine Blades: Study of Underplatform Damper Shape
,”
Key Eng. Mater.
,
347
, pp.
159
164
.
26.
Gola
,
M.
, and
Gastaldi
,
C.
,
2014
, “
Understanding Complexities in Underplatform Damper Mechanics
,”
ASME
Paper No. GT2014-25240.
27.
Gastaldi
,
C.
,
2018
,
Modeling Friction for Turbomachinery Applications: Tuning Techniques and Adequacy Assessment of Heuristic Contact Models
,
InTech
, London.
28.
Gastaldi
,
C.
, and
Gola
,
M.
,
2016
, “
Pre-Optimization of Asymmetrical Underplatform Dampers
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012504
.
29.
Gastaldi
,
C.
,
Berruti
,
T. M.
, and
Gola
,
M. M.
,
2018
, “
Best Practices for Underplatform Damper Designers
,”
Proc. Inst. Mech. Eng., Part C
,
232
(
7
), pp.
1221
1235
.
30.
Gastaldi
,
C.
,
Berruti
,
T. M.
, and
Gola
,
M. M.
,
2018
, “
The Relevance of Damper Pre-Optimization and Its Effectiveness on the Forced Response of Blades
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
062505
.
31.
Botto
,
D.
,
Gastadi
,
C.
,
Gola
,
M. M.
, and
Umer
,
M.
,
2017
, “
An Experimental Investigation of the Dynamics of a Blade With Two Under-Platform Dampers
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032504
.
32.
Botto
,
D.
, and
Umer
,
M.
,
2018
, “
A Novel Test Rig to Investigate Under-Platform Damper Dynamics
,”
Mech. Syst. Signal Process.
,
100
, pp.
344
359
.
33.
Botto
,
D.
,
Lavella
,
M.
, and
Gola
,
M.
,
2012
, “
Measurement of Contact Parameters of Flat on Flat Contact Surfaces at High Temperature
,”
ASME Paper No. GT2012-69677
.
34.
Schwingshackl
,
C.
,
Petrov
,
E.
, and
Ewins
,
D.
,
2012
, “
Measured and Estimated Friction Interface Parameters in a Nonlinear Dynamic Analysis
,”
Mech. Sys. Signal Proc.
,
28
, pp.
574
584
.
35.
Battiato
,
G.
,
Firrone
,
C.
, and
Berruti
,
T.
,
2017
, “
Forced Response of Rotating Bladed Disks: Blade Tip-Timing Measurements
,”
Mech. Syst. Signal Process.
,
85
, pp.
912
926
.
36.
Bessone
,
A.
,
Toso
,
F.
, and
Berruti
,
T.
,
2015
, “
Investigation on the Dynamic Response of Blades With Asymmetric Under Platform Dampers
,”
ASME
Paper No. GT2015-42597.
37.
Gastaldi
,
C.
, and
Berruti
,
T. M.
,
2018
, “
Competitive Time Marching Solution Methods for Systems With Friction-Induced Nonlinearities
,”
Appl. Sci.
,
8
(
2
), p.
291
.
38.
Gastaldi
,
C.
, and
Berruti
,
T. M.
,
2017
, “
A Method to Solve the Efficiency-Accuracy Trade-Off of Multi-Harmonic Balance Calculation of Structures With Friction Contacts
,”
Int. J. Nonlinear Mech.
,
92
, pp.
25
40
.
39.
Gola
,
M.
, and
Gastaldi
,
C.
,
2017
, “
Under-Platform Damper Measurements at Politecnico di Torino
,”
The Mechanics of Jointed Structures
,
Springer
, Basel, Switzerland, pp.
181
204
.
You do not currently have access to this content.