The demand for clean energy continues to increase as the human society becomes more aware of environmental challenges such as global warming. Various power systems based on high-temperature fuel cells have been proposed, especially hybrid systems combining a fuel cell with a gas turbine (GT), and research on carbon capture and storage (CCS) technology to prevent the emission of greenhouse gases is already underway. This study suggests a new method to innovatively enhance the efficiency of a molten carbonate fuel cell (MCFC)/micro GT hybrid system including carbon capture. The key technology adopted to improve the net cycle efficiency is off-gas recirculation. The hybrid system incorporating oxy-combustion capture was devised, and its performance was compared with that of a post-combustion system based on a hybrid system. A MCFC system based on a commercial unit was modeled. Externally supplied water for reforming was not needed as a result of the presence of the water vapor in the recirculated anode off-gas. The analyses confirmed that the thermal efficiencies of all the systems (MCFC stand-alone, hybrid, hybrid with oxy-combustion capture, hybrid with post-combustion capture) were significantly improved by introducing the off-gas recirculation. In particular, the largest efficiency improvement was observed for the oxy-combustion hybrid system. Its efficiency is over 57% and is even higher than that of the post-combustion hybrid system.

References

References
1.
WMO
,
2016
, “
WMO Statement on the State of the Global Climate in 2016
,” World Meteorological Organization, Geneva, Switzerland, Report No. 1189.
2.
Cox
,
P. M.
,
Betts
,
R. A.
,
Jones
,
C. D.
,
Spall
,
S. A.
, and
Totterdell
,
I. J.
,
2000
, “
Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model
,”
Nature
,
408
(
6809
), pp.
184
187
.
3.
Environmental Health and Engineering, Inc
.,
2011
, “
Emissions of Hazardous Air Pollutants From Coal-Fired Power Plants
,” Environmental Health and Engineering, Needham, MA, Report No.
17505
.https://www.csu.edu/cerc/researchreports/documents/EmissionsOfHazardousAirPollutantsFromCoal-FiredPowerPlants2011.pdf
4.
Morrow
,
S. L.
,
Koves
,
G. K.
, and
Barnes
,
V. E.
,
2014
, “
Exploring the Relationship Between Safety Culture and Safety Performance in U.S. Nuclear Power Operations
,”
Saf. Sci.
,
69
, pp.
37
47
.
5.
Elliott
,
D.
, ed.,
2016
,
Nuclear or Not?: Does Nuclear Power Have a Place in a Sustainable Energy Future
?,
Palgrave Macmillan
,
Basingstoke, UK
.
6.
Statistics IEA
,
2016
,
CO2 Emissions From Fuel Combustion-Highlights
,
International Energy Agency
,
Paris, France
.
7.
Campanari
,
S.
,
Manzolini
,
G.
, and
Chiesa
,
P.
,
2013
, “
Using MCFC for High Efficiency CO2 Capture From Natural Gas Combined Cycles: Comparison of Internal and External Reforming
,”
Appl. Energy
,
112
, pp.
772
783
.
8.
Choi
,
J. H.
,
Ahn
,
J. H.
, and
Kim
,
T. S.
,
2014
, “
Performance of a Triple Power Generation Cycle Combining Gas/Steam Turbine Combined Cycle and Solid Oxide Fuel Cell and the Influence of Carbon Capture
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
301
309
.
9.
Sarmah
,
P.
, and
Gogoi
,
T. K.
,
2017
, “
Performance Comparison of SOFC Integrated Combined Power Systems With Three Different Bottoming Steam Turbine Cycles
,”
Energy Convers. Manage.
,
132
, pp.
91
101
.
10.
Yi
,
J. H.
,
Choi
,
J. H.
, and
Kim
,
T. S.
,
2016
, “
Comparative Evaluation of Viable Options for Combining a Gas Turbine and a Solid Oxide Fuel Cell for High Performance
,”
Appl. Therm. Eng.
,
100
, pp.
840
848
.
11.
Kanniche
,
M.
,
Le Moullec
,
Y.
,
Authier
,
O.
,
Hagi
,
H.
,
Bontemps
,
D.
,
Neveux
,
T.
, and
Louis-Louisy
,
M.
,
2017
, “
Up-to-Date CO2 Capture in Thermal Power Plants
,”
Energy Procedia
,
114
, pp.
95
103
.
12.
Leung
,
D. Y.
,
Caramanna
,
G.
, and
Maroto-Valer
,
M. M.
,
2014
, “
An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
426
443
.
13.
Kim
,
H. K.
,
Kim
,
Y.
,
Lee
,
S. M.
, and
Ahn
,
K. Y.
,
2007
, “
NO Reduction in 0.03-0.2 MW Oxy-Fuel Combustor Using Flue Gas Recirculation Technology
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3377
3384
.
14.
Sundkvist
,
S. G.
,
Dahlquist
,
A.
,
Janczewski
,
J.
,
Sjödin
,
M.
,
Bysveen
,
M.
,
Ditaranto
,
M.
,
Langørgen
,
Ø.
,
Seljeskog
,
M.
, and
Siljan
,
M.
,
2014
, “
Concept for a Combustion System in Oxyfuel Gas Turbine Combined Cycles
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
101513
.
15.
Dahlquist
,
A.
, and
Genrup
,
M.
,
2015
, “
Aerodynamic Gas Turbine Compressor Design for an Oxy-Fuel Combined Cycle
,”
ASME
Paper No. GT2015-42028.
16.
Jericha
,
H.
,
Sanz
,
W.
, and
Göttlich
,
E.
,
2008
, “
Design Concept for Large Output Graz Cycle Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011701
.
17.
Allam
,
R.
,
Martin
,
S.
,
Forrest
,
B.
,
Fetvedt
,
J.
,
Lu
,
X.
,
Freed
,
D.
,
Brown
,
G. W.
, Jr.
,
Sasaki
,
T.
,
Itoh
,
M.
, and
Manning
,
J.
,
2017
, “
Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture
,”
Energy Procedia
,
114
, pp.
5948
5966
.
18.
Yang
,
H. J.
,
Kang
,
D. W.
,
Ahn
,
J. H.
, and
Kim
,
T. S.
,
2012
, “
Evaluation of Design Performance of the Semi-Closed Oxy-Fuel Combustion Combined Cycle
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111702
.
19.
Álvarez
,
J. F. G.
, and
de Grado
,
J. G.
,
2016
, “
Study of a Modern Industrial Low Pressure Turbine for Electricity Production Employed in Oxy-Combustion Cycles With CO2 Capture Purposes
,”
Energy
,
107
, pp.
734
747
.
20.
Choi
,
B. S.
,
Kim
,
M. J.
,
Ahn
,
J. H.
, and
Kim
,
T. S.
,
2017
, “
Influence of a Recuperator on the Performance of the Semi-Closed Oxy-Fuel Combustion Combined Cycle
,”
Appl. Therm. Eng.
,
124
, pp.
1301
1311
.
21.
Carapellucci
,
R.
,
Saia
,
R.
, and
Giordano
,
L.
,
2014
, “
Study of Gas-Steam Combined Cycle Power Plants Integrated With MCFC for Carbon Dioxide Capture
,”
Energy Procedia
,
45
, pp.
1155
1164
.
22.
McLarty
,
D.
, and
Brouwer
,
J.
,
2014
, “
Poly-Generating Closed Cathode Fuel Cell With Carbon Capture
,”
Appl. Energy
,
131
, pp.
108
116
.
23.
Duan
,
L.
,
Sun
,
S.
,
Yue
,
L.
,
Qu
,
W.
, and
Yang
,
Y.
,
2015
, “
Study on a New IGCC (Integrated Gasification Combined Cycle) System With CO2 Capture by Integrating MCFC (Molten Carbonate Fuel Cell)
,”
Energy
,
87
, pp.
490
503
.
24.
Spallina
,
V.
,
Romano
,
M. C.
,
Campanari
,
S.
, and
Lozza
,
G.
,
2012
, “
Application of MCFC in Coal Gasification Plants for High Efficiency CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011701
.
25.
Ahn
,
J. H.
, and
Kim
,
T. S.
,
2017
, “
Performance Evaluation of a Molten Carbonate Fuel Cell/Micro Gas Turbine Hybrid System With Oxy-Combustion Carbon Capture
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041502
.
26.
Duan
,
L.
,
Yue
,
L.
,
Qu
,
W.
, and
Yang
,
Y.
,
2015
, “
Study on CO2 Capture From Molten Carbonate Fuel Cell Hybrid System Integrated With Oxygen Ion Transfer Membrane
,”
Energy
,
93
, pp.
20
30
.
27.
POSCO Energy,
2015
, “
Prepared Future
,” POSCO Energy, Seoul, South Korea, accessed Jan. 3, 2018, http://eng.poscoenergy.com/eng/renew/_ui/down/Fuel_Cell_eng.pdf
28.
Choi
,
J. H.
,
Kim
,
T. S.
, and
Kwak
,
B. H.
,
2014
, “
Performance Prediction and Economic Assessment of Atmospheric Pressure MCFC/Gas Turbine Hybrid System With Indirect Turbine Firing
,”
Trans. KSME B
,
38
(
1
), pp.
31
39
.
29.
Shin
,
H. D.
,
Kang
,
D. W.
,
Kim
,
T. S.
,
Choi
,
M. K.
, and
Park
,
P. J.
,
2012
, “
Design Parameter Sensitivity Analysis of a 200 kW Class Micro Gas Turbine System
,”
KSFM J. Fluid Mach.
,
15
(
6
), pp.
39
45
.
30.
Øi
,
L. E.
,
Bråthen
,
T.
,
Berg
,
C.
,
Brekne
,
S. K.
,
Flatin
,
M.
,
Johnsen
,
R.
,
Moen
,
I. G.
, and
Thomassen
,
E.
,
2014
, “
Optimization of Configurations for Amine Based CO2 Absorption Using Aspen HYSYS
,”
Energy Procedia
,
51
, pp.
224
233
.
31.
Li
,
H.
, and
Yan
,
J.
,
2007
, “
Preliminary Study on CO2 Processing in CO2 Capture From Oxy-Fuel Combustion
,”
ASME
Paper No. GT2007-27845.
32.
Aspen Technology
,
2011
, “
Aspen One HYSYS
,” ver. 7.3, Aspen Technology, Bedford, MA.
33.
Baranak
,
M.
, and
Atakül
,
H.
,
2007
, “
A Basic Model for Analysis of Molten Carbonate Fuel Cell Behavior
,”
J. Power Sources
,
172
(
2
), pp.
831
839
.
34.
Kang
,
J. Y.
,
Kang
,
D. W.
,
Kim
,
T. S.
, and
Hur
,
K. B.
,
2014
, “
Comparative Economic Analysis of Gas Turbine-Based Power Generation and Combined Heat and Power Systems Using Biogas Fuel
,”
Energy
,
67
, pp.
309
318
.
35.
Bahadori
,
A.
, and
Vuthaluru
,
H. B.
,
2010
, “
Estimation of Performance of Steam Turbines Using a Simple Predictive Tool
,”
Appl. Therm. Eng.
,
30
(
13
), pp.
1832
1838
.
36.
Combined Cycle Journal,
2005
, “
HRSGs for Small Combined-Cycle and Cogen Plants
,” Combined Cycle Journal, Las Vegas, NV, epub, accessed Jan. 15, 2018, http://www.ccj-online.com/1q-2005/small-hrsgs/
37.
Amann
,
J. M.
,
Kanniche
,
M.
, and
Bouallos
,
C.
,
2009
, “
Natural Gas Combined Cycle Power Plant Modified Into O2/CO2 Cycle for CO2 Capture
,”
Energy Convers. Manage.
,
50
(
3
), pp.
510
521
.
You do not currently have access to this content.