The improvement of efficiency in the design of turbomachines requires a reliable prediction of the vibrating behavior of the whole structure. The simulation of blades vibrations is decisive and this is usually based on elaborated finite element model restricted to the bladed-disk. However, the blades dynamic behavior can be strongly affected by interactions with other parts of the engine. Global dynamic studies that consider these other parts are required but usually come with a high numerical cost. In the case of a birotor architecture, two coaxial rotors with different rotating speeds can be coupled with a bearing system. The mechanical coupling between the shafts generates energy exchange that alters the dynamic behavior of the blades. The equations of motion of the whole structure that take into account the coupling contain periodic time-dependent coefficients due to the difference of rotational speed between both rotors. Equations of this kind, with variable coefficients, are typically difficult to solve. This study presents a preprocessing method to guarantee the elimination of time-dependent coefficients in the birotor equations of motion. This method is tested with a simplified finite element model of two bladed-disks coupled with linear stiffnesses. We obtain accurate results when comparing frequency analysis of preprocessed equations with time-integration resolution of the initial set of equations. The developed methodology also offers a substantial time saving.

References

References
1.
Legrand
,
M.
,
Pierre
,
C.
,
Cartraud
,
P.
, and
Lombard
,
J.-P.
,
2009
, “
Two-Dimensional Modeling of an Aircraft Engine Structural Bladed Disk-Casing Modal Interaction
,”
J. Sound Vib.
,
319
(
1
)pp.
366
391
.
2.
Thomas, D. L.
, 1979, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
14
(1), pp. 81–102.
3.
Laxalde
,
D.
,
Thouverez
,
F.
, and
Lombard
,
J. P.
,
2007
, “
Dynamical Analysis of Multi-Stage Cyclic Structures
,”
Mech. Res. Commun.
,
34
(
4
), pp.
379
384
.
4.
Battiato
,
G.
,
Firrone
,
C. M.
,
Berruti
,
T. M.
, and
Epureanu
,
B. I.
,
2016
, “
Reduced Order Modeling for Multi-Stage Coupling of Cyclic Symmetric Structures
,”
Proc. ISMA
, pp.
3447
3462
.
5.
Ewins
,
D. J.
,
2000
,
Modal Testing: Theory, Practice and Application
,
2nd ed.
,
Research Studies Press Wiley
, New York.
6.
Shapiro
,
V. E.
,
2001
, “
Rotating Class of Parametric Resonance Processes in Coupled Oscillators
,”
Phys. Lett. A
,
290
(
5–6
), pp.
288
296
.
7.
Pradeep
,
S.
, and
Shrivastava
,
S. K.
,
1988
, “
On the Stability of the Damped Mathieu Equation
,”
Mech. Res. Commun.
,
15
(
6
), pp.
353
359
.
8.
Mond
,
M.
,
Cederbaum
,
G.
,
Khan
,
P. B.
, and
Zarmi
,
Y.
,
1993
, “
Stability Analysis of the Non-Linear Mathieu Equation
,”
J. Sound Vib.
,
167
(
1
), pp.
77
89
.
9.
Lalanne
,
M.
, and
Ferraris
,
G.
,
2000
,
Rotordynamics Prediction in Engineering
,
2nd ed.
,
Wiley
, Chichester, UK.
10.
Gruin
,
M.
,
Thouverez
,
F.
,
Blanc
,
L.
, and
Jean
,
P.
,
2011
, “
Nonlinear Dynamics of a Bladed Dual-Shaft
,”
Eur. J. Comput. Mech.
,
20
(
1–4
), pp.
207
225
.
11.
Salvat
,
N.
,
Batailly
,
A.
, and
Legrand
,
M.
,
2015
, “
Two-Dimensional Modeling of Unilateral Contact-Induced Shaft Precessional Motions in Bladed-Disk/Casing Systems
,”
Int. J. Non-Linear Mech.
,
78
, pp.
90
104
.
12.
Gmür
,
T.
,
1997
,
Dynamique Des Structures: Analyse Modale Numérique
,
Presses polytechniques et universitaires romandes
, Lausanne, Switzerland.
13.
Timoshenko
,
S.
,
1937
,
Vibration Problems in Engineering
,
2nd ed.
,
D.Van Nostrand Company INC
, New York.
14.
Rao
,
S. S.
,
2007
,
Vibration of Continuous Systems
,
Wiley
, New York.
15.
Lazarus
,
A.
,
Prabel
,
B.
, and
Combescure
,
D.
,
2010
, “
A 3D Finite Element Model for the Vibration Analysis of Asymmetric Rotating Machines
,”
J. Sound Vib.
,
329
(
18
), pp.
3780
3797
.
16.
Guskov
,
M.
,
Sinou
,
J. J.
, and
Thouverez
,
F.
,
2008
, “
Multi-Dimensional Harmonic Balance Applied to Rotor Dynamics
,”
Mech. Res. Commun.
,
35
(
8
), pp.
537
545
.
17.
Zhou
,
B.
,
Thouverez
,
F.
, and
Lenoir
,
D.
,
2015
, “
A Variable-Coefficient Harmonic Balance Method for the Prediction of Quasi-Periodic Response in Nonlinear Systems
,”
Mech. Syst. Signal Process.
,
64–65
pp.
233
244
.
18.
Feldmann
,
P.
, and
Roychowdhury
,
J.
,
1996
, “
Computation of Circuit Waveform Envelopes Using an Efficient, Matrix-Decomposed Harmonic Balance Algorithm
,”
International Conference on Computer Aided Design
, San Jose, CA, Nov. 10–14, pp.
295
300
.
19.
Laxalde
,
D.
,
2007
, “
Étude D'amortisseurs Non-Linéaires Appliqués Aux Roues Aubagées Et Aux Systèmes Multi-Étages
,” Ph. D. Thèse de doctorat, Ecole Centrale de Lyon, Écully, France.
20.
Kundert
,
K. S.
,
Sorkin
,
G. B.
, and
Sangiovanni-Vincentelli
,
A.
,
1988
, “
Applying Harmonic Balance to Almost-Periodic Circuits
,”
IEEE Trans. Microwave Theory Tech.
, (
2
), pp.
366
378
.
21.
Guédeney
,
T.
,
Gomar
,
A.
,
Gallard
,
F.
,
Sicot
,
F.
,
Dufour
,
G.
, and
Puigt
,
G.
,
2013
, “
Non-Uniform Time Sampling for Multiple-Frequency Harmonic Balance Computations
,”
J. Comput. Phys.
,
236
, pp.
317
345
.
You do not currently have access to this content.