Gas-turbine combustion chambers typically consist of nominally identical sectors arranged in a rotationally symmetric pattern. However, in practice, the geometry is not perfectly symmetric. This may be due to design decisions, such as placing dampers in an azimuthally nonuniform fashion, or to uncertainties in the design parameters, which break the rotational symmetry of the combustion chamber. The question is whether these deviations from symmetry have impact on the thermoacoustic-stability calculation. The paper addresses this question by proposing a fast adjoint-based perturbation method. This method can be integrated into numerical frameworks that are industrial standard such as lumped-network models, Helmholtz and linearized Euler equations. The thermoacoustic stability of asymmetric combustion chambers is investigated by perturbing rotationally symmetric combustor models. The approach proposed in this paper is applied to a realistic three-dimensional combustion chamber model with an experimentally measured flame transfer function (FTF). The model equations are solved with a Helmholtz solver. Results for modes of zeroth, first, and second azimuthal order are presented and compared to exact solutions of the problem. A focus of the discussion is set on the loss of mode-degeneracy due to symmetry breaking and the capability of the perturbation theory to accurately predict it. In particular, an “inclination rule” that explains the behavior of degenerate eigenvalues at first order is proven.

References

References
1.
Lieuwen
,
T. C.
, and
Yang
,
V.
, eds.,
2005
,
Combustion Instabilities in Gas Turbine Engines
(Progress in Astronautics and Aeronautics, Vol. 210),
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
2.
Dowling
,
A. P.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
65
100
.
3.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.
4.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.
5.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.
6.
Magri
,
L.
, and
Juniper
,
M. P.
,
2013
, “
Sensitivity Analysis of a Time-Delayed Thermo-Acoustic System Via an Adjoint-Based Approach
,”
J. Fluid Mech.
,
719
, pp.
183
202
.
7.
Orchini
,
A.
, and
Juniper
,
M. P.
,
2015
, “
Linear Stability and Adjoint Sensitivity Analysis of Thermoacoustic Networks With Premixed Flames
,”
Combust. Flame
,
165
, pp.
97
108
.
8.
Magri
,
L.
,
Bauerheim
,
M.
,
Nicoud
,
F.
, and
Juniper
,
M. P.
,
2016
, “
Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors—Part II: Uncertainty Quantification
,”
J. Comput. Phys.
,
325
, pp.
411
421
.
9.
Silva
,
C. F.
,
Magri
,
L.
,
Runte
,
T.
, and
Polifke
,
W.
,
2016
, “
Uncertainty Quantification of Growth Rates of Thermoacoustic Instability by an Adjoint Helmholtz Solver
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
011901
.
10.
Mensah
,
G. A.
,
Magri
,
L.
, and
Moeck
,
J. P.
,
2018
, “
Methods for the Calculation of Thermoacoustic Stability Boundaries and Monte Carlo-Free Uncertainty Quantification
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061501
.
11.
Mensah
,
G. A.
, and
Moeck
,
J. P.
, “
Efficient Computation of Thermoacoustic Modes in Annular Combustion Chambers Based on Bloch-Wave Theory
,”
ASME
Paper No. GT2015-43476.
12.
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2017
, “
Acoustic Damper Placement and Tuning for Annular Combustors: An Adjoint-Based Optimization Study
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
061501
.
13.
Moeck
,
J. P.
,
Paul
,
M.
, and
Paschereit
,
C. O.
,
2010
, “
Thermoacoustic Instabilities in an Annular Rijke Tube
,”
ASME
Paper No. GT2010-23577.
14.
Noiray
,
N.
,
Bothien
,
M.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theory Modell.
,
15
(
5
), pp.
585
606
.
15.
Parmentier
,
J.-F.
,
Salas
,
P.
,
Wolf
,
P.
,
Staffelbach
,
G.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2012
, “
A Simple Analytical Model to Study and Control Azimuthal Instabilities in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
7
), pp.
2374
2387
.
16.
Bauerheim
,
M.
,
Ndiaye
,
A.
,
Constantine
,
P.
,
Moreau
,
S.
, and
Nicoud
,
F.
,
2016
, “
Symmetry Breaking of Azimuthal Thermoacoustic Modes: The UQ Perspective
,”
J. Fluid Mech.
,
789
, pp.
534
566
.
17.
Lancaster
,
P.
,
1961
, “
A Generalised Rayleigh Quotient Iteration for Lambda-Matrices
,”
Arch. Rational Mech Anal.
,
8
(
1
), pp.
309
322
.
18.
Güttel
,
S.
, and
Tisseur
,
F.
,
2017
, “
The Nonlinear Eigenvalue Problem
,”
Acta Numer.
,
26
, pp.
1
94
.
19.
Magri
,
L.
,
Bauerheim
,
M.
, and
Juniper
,
M. P.
,
2016
, “
Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors—Part I: Sensitivity
,”
J. Comput. Phys.
,
325
, pp.
395
410
.
20.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J.
,
Schuller
,
T.
, and
Candel
,
S.
,
2014
, “
Characterization and Modeling of a Spinning Thermoacoustic Instability in an Annular Combustor Equipped With Multiple Matrix Injectors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
021503
.
21.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J.
,
Schuller
,
T.
, and
Candel
,
S.
,
2014
, “
A New Pattern of Instability Observed in an Annular Combustor: The Slanted Mode
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3237
3244
.
22.
Prieur
,
K.
,
Durox
,
D.
, and
Schuller
,
T.
,
2017
, “
A Hysteresis Phenomenon Leading to Spinning or Standing Azimuthal Instabilities in an Annular Combustor
,”
Combust. Flame
,
175
, pp.
283
291
.
23.
Laera
,
D.
,
Schuller
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Camporeale
,
S. M.
, and
Candel
,
S.
,
2017
, “
Flame Describing Function Analysis of Spinning and Standing Modes in an Annular Combustor and Comparison With Experiments
,”
Combust. Flame
,
184
, pp.
136
152
.
24.
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2017
, “
Limit Cycles of Spinning Thermoacoustic Modes in Annular Combustors: A Bloch-Wave and Adjoint-Perturbation Approach
,”
ASME
Paper No. GT2017-64817.
25.
Gustavsen
,
B.
, and
Semlyen
,
A.
,
1999
, “
Rational Approximation of Frequency Domain Responses by Vector Flltlng
,”
IEEE Trans. Power Delivery
,
14
(
3
), pp.
1052
1061
.
26.
Gustavsen
,
B.
,
2006
, “
Improving the Pole Relocating Properties of Vector Fitting
,”
IEEE Trans. Power Delivery
,
21
(3), pp. 1587–1592.
27.
Bloch
,
F.
,
1929
, “
Über Die Quantenmechanik Der Elektronen in Kristallgittern
,”
Z. Phys.
,
52
(
7–8
), pp.
555
560
.
28.
Bauerheim
,
M.
,
Salas
,
P.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2014
, “
Symmetry Breaking of Azimuthal Thermo-Acoustic Modes in Annular Cavities: A Theoretical Study
,”
J. Fluid Mech.
,
760
, pp.
431
465
.
You do not currently have access to this content.