The fundamental impact of the precessing vortex core (PVC) as a dominant coherent flow structure in the flow field of swirl-stabilized gas turbine combustors has still not been investigated in depth. In order to do so, the PVC needs to be actively controlled to be able to set its parameters independently to any other of the combustion system. In this work, open-loop actuation is applied in the mixing section between the swirler and the generic combustion chamber of a nonreacting swirling jet setup to investigate the receptivity of the PVC with regard to its lock-in behavior at different streamwise positions. The mean flow in the mixing section as well as in the combustion chamber is measured by stereoscopic particle image velocimetry (SPIV), and the PVC is extracted from the snapshots using proper orthogonal decomposition (POD). The lock-in experiments reveal the axial position in the mixing section that is most suitable for actuation. Furthermore, a global linear stability analysis (LSA) is conducted to determine the adjoint mode of the PVC which reveals the regions of highest receptivity to periodic actuation based on mean flow input only. This theoretical receptivity model is compared with the experimentally obtained receptivity data, and the applicability of the adjoint-based model for the prediction of optimal actuator designs is discussed.

References

References
1.
Syred
,
N.
, and
Beer
,
J.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
23
(
2
), pp.
143
201
.
2.
Oberleithner
,
K.
,
Paschereit
,
C.
, and
Wygnanski
,
I.
,
2014
, “
On the Impact of Swirl on the Growth of Coherent Structures
,”
J. Fluid Mech.
,
741
, pp.
156
199
.
3.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.
4.
Terhaar
,
S.
,
Ćosić
,
B.
,
Paschereit
,
C.
, and
Oberleithner
,
K.
,
2016
, “
Suppression and Excitation of the Precessing Vortex Core by Acoustic Velocity Fluctuations: An Experimental and Analytical Study
,”
Combust. Flame
,
172
, pp.
234
251
.
5.
Ghani
,
A.
,
Poinsot
,
T.
,
Gicquel
,
L.
, and
Müller
,
J.-D.
,
2016
, “
Les Study of Transverse Acoustic Instabilities in a Swirled Kerosene/Air Combustion Chamber
,”
Flow, Turbul. Combust.
,
96
(
1
), pp.
207
226
.
6.
Stöhr
,
M.
,
Arndt
,
C. M.
, and
Meier
,
W.
,
2015
, “
Transient Effects of Fuel–Air Mixing in a Partially-Premixed Turbulent Swirl Flame
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3327
3335
.
7.
Terhaar
,
S.
,
Krüger
,
O.
, and
Paschereit
,
C. O.
,
2015
, “
Flow Field and Flame Dynamics of Swirling Methane and Hydrogen Flames at Dry and Steam Diluted Conditions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041503
.
8.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C.
,
Paschereit
,
C.
,
Petz
,
C.
,
Hege
,
H.-C.
,
Noack
,
B.
, and
Wygnanski
,
I.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction
,”
J. Fluid Mech.
,
679
, pp.
383
414
.
9.
Paredes
,
P.
,
Terhaar
,
S.
,
Oberleithner
,
K.
,
Theofilis
,
V.
, and
Paschereit
,
C. O.
,
2016
, “
Global and Local Hydrodynamic Stability Analysis as a Tool for Combustor Dynamics Modeling
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021504
.
10.
Tammisola
,
O.
, and
Juniper
,
M.
,
2016
, “
Coherent Structures in a Swirl Injector at Re= 4800 by Nonlinear Simulations and Linear Global Modes
,”
J. Fluid Mech.
,
792
, pp.
620
657
.
11.
Kaiser
,
T. L.
,
Poinsot
,
T.
, and
Oberleithner
,
K.
,
2018
, “
Stability and Sensitivity Analysis of Hydrodynamic Instabilities in Industrial Swirled Injection Systems
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051506
.
12.
Giannetti
,
F.
, and
Luchini
,
P.
,
2007
, “
Structural Sensitivity of the First Instability of the Cylinder Wake
,”
J. Fluid Mech.
,
581
, pp.
167
197
.
13.
Marquet
,
O.
,
Sipp
,
D.
, and
Jacquin
,
L.
,
2008
, “
Sensitivity Analysis and Passive Control of Cylinder Flow
,”
J. Fluid Mech.
,
615
, pp.
221
252
.
14.
Meliga
,
P.
,
Pujals
,
G.
, and
Serre
,
E.
,
2012
, “
Sensitivity of 2D Turbulent Flow past a d-Shaped Cylinder Using Global Stability
,”
Phys. Fluids
,
24
(
6
), p.
061701
.
15.
Meliga
,
P.
,
Boujo
,
E.
, and
Gallaire
,
F.
,
2016
, “
A Self-Consistent Formulation for the Sensitivity Analysis of Finite-Amplitude Vortex Shedding in the Cylinder Wake
,”
J. Fluid Mech.
,
800
, pp.
327
357
.
16.
Magri
,
L.
, and
Juniper
,
M. P.
,
2014
, “
Global Modes, Receptivity, and Sensitivity Analysis of Diffusion Flames Coupled With Duct Acoustics
,”
J. Fluid Mech.
,
752
, pp.
237
265
.
17.
Kuhn
,
P.
,
Moeck
,
J. P.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Control of the Precessing Vortex Core by Open and Closed-Loop Forcing in the Jet Core
,”
ASME
Paper No. GT2016-57686.
18.
Reynolds
,
W.
, and
Hussain
,
A.
,
1972
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow—Part 3: Theoretical Models and Comparisons With Experiments
,”
J. Fluid Mech.
,
54
(
2
), pp.
263
288
.
19.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
20.
Rukes
,
L.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
An Assessment of Turbulence Models for Linear Hydrodynamic Stability Analysis of Strongly Swirling Jets
,”
Eur. J. Mech.-B/Fluids
,
59
, pp.
205
218
.
21.
Ivanova
,
E. M.
,
Noll
,
B. E.
, and
Aigner
,
M.
,
2013
, “
A Numerical Study on the Turbulent Schmidt Numbers in a Jet in Crossflow
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
011505
.
22.
Barkley
,
D.
,
2006
, “
Linear Analysis of the Cylinder Wake Mean Flow
,”
Europhys. Lett
,
75
(
5
), pp.
750
756
.
23.
Paredes
,
P.
,
2014
, “
Advances in Global Instability Computations: From Incompressible to Hypersonic Flow
,” Ph.D. thesis, Technical University of Madrid, Madrid, Spain.
24.
Meliga
,
P.
,
Gallaire
,
F.
, and
Chomaz
,
J.-M.
,
2012
, “
A Weakly Nonlinear Mechanism for Mode Selection in Swirling Jets
,”
J. Fluid Mech.
,
699
, pp.
216
262
.
25.
Magri
,
L.
, and
Juniper
,
M. P.
,
2014
, “
Adjoint-Based Linear Analysis in Reduced-Order Thermo-Acoustic Models
,”
Int. J. Spray Combust. Dyn.
,
6
(
3
), pp.
225
246
.
26.
Balanov
,
A.
,
Janson
,
N.
,
Postnov
,
D.
, and
Sosnovtseva
,
O.
,
2008
,
Synchronization: From Simple to Complex
,
Springer Science & Business Media
,
Berlin
.
27.
Oberleithner
,
K.
,
2012
, “
On Turbulent Swirling Jets: Vortex Breakdown, Coherent Structures, and Their Control
,” Ph.D. thesis, Universitätsbibliothek der Technischen Universität Berlin, Berlin.
28.
Lückoff
,
F.
,
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2018
, “
Characterization of Different Actuator Designs for the Control of the Precessing Vortex Core in a Swirl-Stabilized Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041503
.
You do not currently have access to this content.