Phosphor thermometry has been developed for wall temperature measurements in gas turbines and gas turbine model combustors. An array of phosphors has been examined in detail for spatially and temporally resolved surface temperature measurements. Two examples are provided, one at high pressure (8 bar) and high temperature and one at atmospheric pressure with high time resolution. To study the feasibility of this technique for full-scale gas turbine applications, a high momentum confined jet combustor at 8 bar was used. Successful measurements up to 1700 K on a ceramic surface are shown with good accuracy. In the same combustor, temperatures on the combustor quartz walls were measured, which can be used as boundary conditions for numerical simulations. An atmospheric swirl-stabilized flame was used to study transient temperature changes on the bluff body. For this purpose, a high-speed setup (1 kHz) was used to measure the wall temperatures at an operating condition where the flame switches between being attached (M-flame) and being lifted (V-flame) (bistable). The influence of a precessing vortex core (PVC) present during M-flame periods is identified on the bluff body tip, but not at positions further inside the nozzle.

References

References
1.
Kerr
,
C.
, and
Ivey
,
P.
,
2002
, “
An Overview of the Measurement Errors Associated With Gas Turbine Aeroengine Pyrometer Systems
,”
Meas. Sci. Technol.
,
13
(
6
), pp.
873
881
.
2.
Suarez
,
E.
, and
Przirembel
,
H. R.
,
1990
, “
Pyrometry for Turbine Blade Development
,”
J. Propul. Power
,
6
(
5
), pp.
584
589
.
3.
Lempereur
,
C.
,
Andral
,
R.
, and
Prudhomme
,
J. Y.
,
2008
, “
Surface Temperature Measurement on Engine Components by Means of Irreversible Thermal Coatings
,”
Meas. Sci. Technol.
,
19
(
10
), p.
105501
.
4.
Bachuchin
,
I. V.
,
Zabusov
,
O. O.
,
Morozov
,
V. A.
,
Nikolaenko
,
V. A.
, and
Saltykov
,
M. A.
,
2011
, “
Temperature Measurement With Irradiated Materials
,”
At. Energy
,
110
(
3
), pp.
178
183
.
5.
Araguás Rodríguez
,
S.
,
Jelínek
,
T.
,
Michálek
,
J.
,
Yáñez-González
,
Á.
,
Schulte
,
F.
,
Pilgrim
,
C. C.
,
Feist
,
J. P.
, and
Skinner
,
S. J.
,
2017
, “
Accelerated Thermal Profiling of Gas Turbine Components Using Luminescent Thermal History Paints
,”
First Global Power and Propulsion Forum, Zurich, Switzerland, Jan. 16–18, Paper No. GPPF 2017
.
6.
Allison
,
S. W.
, and
Gillies
,
G. T.
,
1997
, “
Remote Thermometry With Thermographic Phosphors: Instrumentation and Applications
,”
Rev. Sci. Instrum.
,
68
(
7
), pp.
2615
2650
.
7.
Chambers
,
M.
, and
Clarke
,
D.
,
2009
, “
Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry
,”
Annu. Rev. Mater. Res.
,
39
(
1
), pp.
325
359
.
8.
Aldén
,
M.
,
Omrane
,
A.
,
Richter
,
M.
, and
Särner
,
G.
,
2011
, “
Thermographic Phosphors for Thermometry: A Survey of Combustion Applications
,”
Prog. Energy Combust. Sci.
,
37
(
4
), pp.
422
461
.
9.
Brübach
,
J.
,
Pflitsch
,
C.
,
Dreizler
,
A.
, and
Atakan
,
B.
,
2013
, “
On Surface Temperature Measurements With Thermographic Phosphors: A Review
,”
Prog. Energy Combust. Sci.
,
39
(
1
), pp.
37
60
.
10.
Dorenbos
,
P.
,
2005
, “
Thermal Quenching of Eu2+ 5d-4f Luminescence in Inorganic Compounds
,”
J. Phys.: Condens. Matter
,
17
(
50
), p.
8103
.
11.
Witkowski
,
D.
, and
Rothamer
,
D. A.
,
2017
, “
A Methodology for Identifying Thermographic Phosphors Suitable for High-Temperature Gas Thermometry: Application to Ce3+ and Pr3+ Doped Oxide Hosts
,”
Appl. Phys. B
,
123
(
8
), p.
226
.
12.
Heyes
,
A.
,
Seefeldt
,
S.
, and
Feist
,
J.
,
2006
, “
Two-Colour Phosphor Thermometry for Surface Temperature Measurement
,”
Opt. Laser Technol.
,
38
(
4–6
), pp.
257
265
.
13.
Fuhrmann
,
N.
,
Brübach
,
J.
, and
Dreizler
,
A.
,
2013
, “
Phosphor Thermometry: A Comparison of the Luminescence Lifetime and the Intensity Ratio Approach
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3611
3618
.
14.
Khalid
,
A. H.
,
Kontis
,
K.
, and
Behtash
,
H.-Z.
,
2010
, “
Phosphor Thermometry in Gas Turbines: Consideration Factors
,”
Proc. Inst. Mech. Eng., Part G
,
224
(
7
), pp.
745
755
.
15.
Noel
,
B. W.
,
Borella
,
H. M.
,
Lewis
,
W.
,
Turley
,
W. D.
,
Beshears
,
D. L.
,
Capps
,
G. J.
,
Cates
,
M. R.
,
Muhs
,
J. D.
, and
Tobin
,
K. W.
,
1991
, “
Evaluating Thermographic Phosphors in an Operating Turbine Engine
,”
ASME J. Eng. Gas Turbines Power
,
113
(
2
), pp.
242
245
.
16.
Eldridge
,
J. I.
,
Allison
,
S. W.
,
Jenkins
,
T. P.
,
Gollub
,
S. L.
,
Hall
,
C. A.
, and
Walker
,
D. G.
,
2016
, “
Surface Temperature Measurements From a Stator Vane Doublet in a Turbine Afterburner Flame Using a YAG:Tm Thermographic Phosphor
,”
Meas. Sci. Technol.
,
27
(
12
), p.
125205
.
17.
Feist
,
J. P.
,
Sollazzo
,
P. Y.
,
Berthier
,
S.
,
Charnley
,
B.
, and
Wells
,
J.
,
2012
, “
Application of an Industrial Sensor Coating System on a Rolls-Royce Jet Engine for Temperature Detection
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012101
.
18.
Brübach
,
J.
,
Janicka
,
J.
, and
Dreizler
,
A.
,
2009
, “
An Algorithm for the Characterisation of Multi-Exponential Decay Curves
,”
Opt. Lasers Eng.
,
47
(
1
), pp.
75
79
.
19.
Yalin
,
A. P.
, and
Zare
,
R. N.
,
2002
, “
Effect of Laser Lineshape on the Quantitative Analysis of Cavity Ring-Down Signals
,”
Laser Phys.
,
12
(
8
), p.
1065
.https://web.stanford.edu/group/Zarelab/publinks/zarepub692.pdf
20.
Knappe
,
C.
,
Algotsson
,
M.
,
Andersson
,
P.
,
Richter
,
M.
,
Tunér
,
M.
,
Johansson
,
B.
, and
Aldén
,
M.
,
2013
, “
Thickness Dependent Variations in Surface Phosphor Thermometry During Transient Combustion in an HCCI Engine
,”
Combust. Flame
,
160
(
8
), pp.
1466
1475
.
21.
Steinberg
,
A.
,
Arndt
,
C.
, and
Meier
,
W.
,
2013
, “
Parametric Study of Vortex Structures and Their Dynamics in Swirl-Stabilized Combustion
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3117
3125
.
22.
Meier
,
W.
,
Weigand
,
P.
,
Duan
,
X.
, and
Giezendanner-Thoben
,
R.
,
2007
, “
Detailed Characterization of the Dynamics of Thermoacoustic Pulsations in a Lean Premixed Swirl Flame
,”
Combust. Flame
,
150
(
1–2
), pp.
2
26
.
23.
Yin
,
Z.
,
Nau
,
P.
, and
Meier
,
W.
,
2017
, “
Responses of Combustor Surface Temperature to Flame Shape Transitions in a Turbulent Bi-Stable Swirl Flame
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
50
57
.
24.
Lammel
,
O.
,
Severin
,
M.
,
Ax
,
H.
,
Lückerath
,
R.
,
Tomasello
,
A.
,
Emmi
,
Y.
,
Noll
,
B.
,
Aigner
,
M.
, and
Panek
,
L.
,
2017
, “
High Momentum Jet Flames at Elevated Pressure, A: Experimental and Numerical Investigation for Different Fuels
,”
ASME
Paper No. GT2017-64615.
25.
Severin
,
M.
,
Lammel
,
O.
,
Ax
,
H.
,
Lückerath
,
R.
,
Meier
,
W.
,
Aigner
,
M.
, and
Heinze
,
J.
,
2017
, “
High Momentum Jet Flames at Elevated Pressure, B: Detailed Investigation of Flame Stabilization With Simultaneous PIV and OH-LIF
,”
ASME
Paper No. GT2017-64556.
26.
Kissel
,
T.
,
Brübach
,
J.
,
Euler
,
M.
,
Frotscher
,
M.
,
Litterscheid
,
C.
,
Albert
,
B.
, and
Dreizler
,
A.
,
2013
, “
Phosphor Thermometry: On the Synthesis and Characterisation of Y3Al5O12:Eu (YAG:Eu) and YAlO3:Eu (Yap:Eu)
,”
Mater. Chem. Phys.
,
140
(
2–3
), pp.
435
440
.
27.
Brübach
,
J.
,
Feist
,
J. P.
, and
Dreizler
,
A.
,
2008
, “
Characterization of Manganese-Activated Magnesium Fluorogermanate With Regards to Thermographic Phosphor Thermometry
,”
Meas. Sci. Technol.
,
19
(
2
), p.
025602
.
28.
Nau
,
P.
,
Yin
,
Z.
,
Geigle
,
K. P.
, and
Meier
,
W.
,
2017
, “
Wall Temperature Measurements at Elevated Pressures and High Temperatures in Sooting Flames in a Gas Turbine Model Combustor
,”
Appl. Phys. B
,
123
(
12
), p.
279
.
29.
Abou Nada
,
F.
,
Knappe
,
C.
,
Aldén
,
M.
, and
Richter
,
M.
,
2016
, “
Improved Measurement Precision in Decay Time-Based Phosphor Thermometry
,”
Appl. Phys. B
,
122
(
6
), pp.
1
12
.
30.
Brübach
,
J.
,
Dreizler
,
A.
, and
Janicka
,
J.
,
2007
, “
Gas Compositional and Pressure Effects on Thermographic Phosphor Thermometry
,”
Meas. Sci. Technol.
,
18
(
3
), pp.
764
770
.
31.
Pareja
,
J.
,
Litterscheid
,
C.
,
Kaiser
,
B.
,
Euler
,
M.
,
Fuhrmann
,
N.
,
Albert
,
B.
,
Molina
,
A.
,
Ziegler
,
J.
, and
Dreizler
,
A.
,
2014
, “
Surface Thermometry in Combustion Diagnostics by Sputtered Thin Films of Thermographic Phosphors
,”
Appl. Phys. B
,
117
(
1
), pp.
85
93
.
32.
Cates
,
M.
,
Allison
,
S.
,
Jaiswal
,
S.
, and
Beshears
,
D.
,
2003
, “
YAG:Dy and YAG:Tm Fluorescence to 1700 C
,”
Proc. Int. Instr. Symp.
,
49
, pp.
389
400
.
33.
Chepyga
,
L. M.
,
Jovicic
,
G.
,
Vetter
,
A.
,
Osvet
,
A.
,
Brabec
,
C. J.
, and
Batentschuk
,
M.
,
2016
, “
Photoluminescence Properties of Thermographic Phosphors YAG:Dy and YAG:Dy, Er Doped With Boron and Nitrogen
,”
Appl. Phys. B
,
122
(
8
), pp.
1
10
.
34.
Jovicic
,
G.
,
Zigan
,
L.
,
Pfadler
,
S.
, and
Leipertz
,
A.
,
2012
, “
Simultaneous Two-Dimensional Temperature and Velocity Measurements in a Gas Flow Applying Thermographic Phosphors
,”
16th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July 9–12.http://ltces.dem.ist.utl.pt/LXLASER/lxlaser2012/upload/95_paper_czufzu.pdf
35.
Hertle
,
E.
,
Chepyga
,
L.
,
Batentschuk
,
M.
, and
Zigan
,
L.
,
2016
, “
Influence of Codoping on the Luminescence Properties of YAG:Dy for High Temperature Phosphor Thermometry
,”
J. Lumin.
,
182
, pp.
200
207
.
36.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.
37.
Oberleithner
,
K.
,
Stöhr
,
M.
,
Im
,
S. H.
,
Arndt
,
C. M.
, and
Steinberg
,
A. M.
,
2015
, “
Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis
,”
Combust. Flame
,
162
(
8
), pp.
3100
3114
.
38.
Morley
,
C.
, 2010, “
Gaseq, A Chemical Equilibrium Program for Windows
,” Version 0.79b, accessed Nov. 10, http://www.gaseq.co.uk/
39.
Neal
,
N. J.
,
Jordan
,
J.
, and
Rothamer
,
D.
,
2013
, “
Simultaneous Measurements of In-Cylinder Temperature and Velocity Distribution in a Small-Bore Diesel Engine Using Thermographic Phosphors
,”
SAE Int. J. Engines
,
6
(
1
), pp.
300
318
.
You do not currently have access to this content.