Modern lean burn aero-engine combustors make use of relevant swirl degrees for flame stabilization. Moreover, important temperature distortions are generated, in tangential and radial directions, due to discrete fuel injection and liner cooling flows respectively. At the same time, more efficient devices are employed for liner cooling and a less intense mixing with the mainstream occurs. As a result, aggressive swirl fields, high turbulence intensities, and strong hot streaks are achieved at the turbine inlet. In order to understand combustor-turbine flow field interactions, it is mandatory to collect reliable experimental data at representative flow conditions. While the separated effects of temperature, swirl, and turbulence on the first turbine stage have been widely investigated, reduced experimental data is available when it comes to consider all these factors together.In this perspective, an annular three-sector combustor simulator with fully cooled high pressure vanes has been designed and installed at the THT Lab of University of Florence. The test rig is equipped with three axial swirlers, effusion cooled liners, and six film cooled high pressure vanes passages, for a vortex-to-vane count ratio of 1:2. The relative clocking position between swirlers and vanes has been chosen in order to have the leading edge of the central NGV aligned with the central swirler. In order to generate representative conditions, a heated mainstream passes though the axial swirlers of the combustor simulator, while the effusion cooled liners are fed by air at ambient temperature. The resulting flow field exiting from the combustor simulator and approaching the cooled vane can be considered representative of a modern Lean Burn aero engine combustor with swirl angles above ±50 deg, turbulence intensities up to about 28% and maximum-to-minimum temperature ratio of about 1.25. With the final aim of investigating the hot streaks evolution through the cooled high pressure vane, the mean aerothermal field (temperature, pressure, and velocity fields) has been evaluated by means of a five-hole probe equipped with a thermocouple and traversed upstream and downstream of the NGV cascade.

References

References
1.
ICAO
,
1999
, “
ICAO Adopts New Aircraft Engine Emissions and Noise Standards
,” Council of the International Civil Aviation Organization (ICAO), Montreal, QC, Canada.
2.
ACARE
,
2000
, “
Strategic Research Agenda
,” Advisory Council For Aeronautics Research in Europe.
3.
Barringer
,
M. D.
,
Thole
,
K. A.
,
Polanka
,
M. D.
,
Clark
,
J. P.
, and
Koch
,
P. J.
,
2009
, “
Migration of Combustor Exit Profiles Through High Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021010
.
4.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2009
, “
Effects of Combustor Exit Profiles on Vane Aerodynamic Loading and Heat Transfer in a High Pressure Turbine
,”
ASME J. Turbomach.
,
131
(
2
), p.
021008
.
5.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2011
, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part III: Impact of Hot-Streak Characteristics on Blade Row Heat Flux
,”
ASME J. Turbomach.
,
134
(
1
), p.
011008
.
6.
Turrell
,
M. D.
,
Stopford
,
P. J.
,
Syed
,
K. J.
, and
Buchanan
,
E.
,
2004
, “
CFD Simulation of the Flow Within and Downstream of a High-Swirl Lean Premixed Gas Turbine Combustor
,”
ASME
Paper No. GT2004-53112.
7.
Qureshi
,
I.
,
Smith
,
A.
, and
Povey
,
T.
,
2012
, “
Hp Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl
,”
ASME J. Turbomach.
,
135
(
2
), p.
021040
.
8.
Jacobi
,
S.
,
Mazzoni
,
C.
,
Rosic
,
B.
, and
Chana
,
K.
,
2017
, “
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow With Swirl
,”
ASME J. Turbomach.
,
139
(
4
), p.
041006
.
9.
Schmid
,
G.
,
Krichbaum
,
A.
,
Werschnik
,
H.
, and
Schiffer
,
H. P.
,
2014
, “
The Impact of Realistic Inlet Swirl in a 1 1/2 Stage Axial Turbine
,”
ASME
Paper No. GT2014-26716.
10.
Qureshi
,
I.
,
Beretta
,
A.
, and
Povey
,
T.
,
2010
, “
Effect of Simulated Combustor Temperature Nonuniformity on Hp Vane and End Wall Heat Transfer: An Experimental and Computational Investigation
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
031901
.
11.
Jenkins
,
S.
,
Varadarajan
,
K.
, and
Bogard
,
D. G.
,
2004
, “
The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of a Simulated Hot Streak
,”
ASME J. Turbomach.
,
126
(
1
), pp.
203
211
.
12.
Jenkins
,
S. C.
, and
Bogard
,
D. G.
,
2009
, “
Superposition Predictions of the Reduction of Hot Streaks by Coolant From a Film-Cooled Guide Vane
,”
ASME J. Turbomach.
,
131
(
4
), p.
041002
.
13.
Barigozzi
,
G.
,
Mosconi
,
S.
,
Perdichizzi
,
A.
, and
Ravelli
,
S.
,
2017
, “
The Effect of Hot Streaks on a High Pressure Turbine Vane Cascade With Showerhead Film Cooling
,”
Int. J. Turbomach. Propul. Power
,
2
(
3
), p.
15
.
14.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4
), p.
041005
.
15.
Hall
,
B. F.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2013
, “
Design of a Non Reacting Combustor Simulator With Swirl and Temperature Distortion With Experimental Validation
,”
ASME
Paper No. GT2013-95499.
16.
Hall
,
B. F.
, and
Povey
,
T.
,
2015
, “
Experimental Study of a Non-Reacting Low NOx Combustor Simulator for Scaled Turbine Experiments
,”
ASME
Paper No. GT2015-43530.
17.
Killoros
,
B.
,
Lubbock
,
R.
,
Beard
,
P.
,
Goenaga
,
F.
,
Rawlinson
,
A.
,
Janke
,
E.
, and
Povey
,
T.
,
2017
, “
ECAT: An Engine Component Aerothermal Facility at the University of Oxford
,”
ASME
Paper No. GT2017-64736.
18.
Bacci
,
T.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J. L.
,
2015
, “
Flowfield and Temperature Profiles of a Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-42217.
19.
Bacci
,
T.
,
Facchini
,
B.
,
Picchi
,
A.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J. L.
,
2015
, “
Turbulence Field Measurements at the Exit of a Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-42218.
20.
Andreini
,
A.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2014
, “
Experimental Investigation of the Flow Field and the Heat Transfer on a Scaled Cooled Combustor Liner With Realistic Swirling Flow Generated by a Lean-Burn Injection System
,”
ASME J. Turbomach.
,
137
(
3
), p.
031012
.
21.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H. J.
, and
Gerendas
,
M.
,
2012
, “
Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
121503
.
22.
Koupper
,
C.
,
Caciolli
,
G.
,
Gicquel
,
L.
,
Duchaine
,
F.
,
Bonneau
,
G.
,
Tarchi
,
L.
, and
Facchini
,
B.
,
2014
, “
Development of an Engine Representative Combustor Simulator Dedicated to Hot Streak Generation
,”
ASME J. Turbomach.
,
136
(
11
), p. 111007.
23.
Andreini
,
A.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2015
, “
Hybrid RANS-LES Modeling of a Hot Streak Generator Oriented to the Study of Combustor-Turbine Interaction
,”
ASME
Paper No. GT2015-42402.
24.
Andreini
,
A.
,
Bacci
,
T.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2016
, “
Hibrid RANS-LES Modeling of the Aero-Thermal Field in an Annular Hot Streak Generator for the Study of Combustor-Turbine Interaction
,”
ASME
Paper No. GT2016-56583.
25.
ASME
,
1985
, “
Measurement Uncertainty
,” Instrument and Apparatus of Performance Test Code, American Society of Mechanical Engineers, New York, Report No. ANSI/ASME PTC 19.1-1985.
26.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
27.
Akshoy
,
R. P.
,
Ravi
,
R. U.
, and
Anuj
,
J.
,
2011
, “
A Novel Calibration Algorithm for Five-Hole Pressure Probe
,”
Int. J. Eng., Sci. Technol.
,
3
(
2
), pp.
89
95
.
28.
Treaster
,
A. L.
, and
Yocum
,
A. M.
,
1978
, “
The Calibration and Application of Five-Hole Probes
,” 24th International Instrumentation Symposium, Albuquerque, NM, May 1–5, Report No. TM78-10.
29.
Koupper
,
C.
,
Bonneau
,
G.
,
Bacci
,
T.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Gicquel
,
L.
, and
Duchaine
,
F.
,
2015
, “
Experimental and Numerical Calculation of Turbulent Timescales at the Exit of an Engine Representative Combustor Simulator
,”
ASME
Paper No. GT2015-42278.
30.
Povey
,
T.
, and
Qureshi
,
I.
,
2009
, “
Developments in Hot-Streak Simulators for Turbine Testing
,”
ASME J. Turbomach.
,
131
(
3
), p.
031009
.
You do not currently have access to this content.