In the present work, the fluctuations of equivalence ratio in the PRECCINSTA combustor are investigated via large eddy simulations (LES). Four isothermal flow cases with different combinations of global equivalence ratios (0.7 or 0.83) and grids (1.2 or 1.8 million cells) are simulated to study the mixing process of air with methane, which is injected into the inlet channel through small holes. It is shown that the fluctuations of equivalence ratio are very large, and their ranges are [0.4, 1.3] and [0.3, 1.2] for cases 0.83 and 0.7, respectively. For simulating turbulent partially premixed flames in this burner with the well-known dynamically thickened flame (DTF) combustion model, a suitable multistep reaction mechanism should be chosen aforehand. To do that, laminar premixed flames of 15 different equivalence ratios are calculated using three different methane/air reaction mechanisms: 2S_CH4_BFER, 2sCM2 reduced mechanisms and GRI-Mech 3.0 detailed reaction mechanism. The variations of flame temperature, flame speed and thickness of the laminar flames with the equivalence ratios are compared in detail. It is demonstrated that the applicative equivalence ratio range for the 2S_CH4_BFER mechanism is [0.5, 1.3], which is larger than that of the 2sCM2 mechanism [0.5, 1.2]. Therefore, it is recommended to use the 2S_CH4_BFER scheme to simulate the partially premixed flames in the PRECCINSTA combustion chamber.

References

References
1.
Masri
,
A. R.
,
2015
, “
Partial Premixing and Stratification in Turbulent Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1115
1136
.
2.
Oijen
,
J. A. V.
,
Donini
,
A.
,
Bastiaans
,
R. J. M.
,
ten Thije Boonkkamp
,
J. H. M.
, and
de Goey
,
L. P. H.
,
2016
, “
State-of-the-Art in Premixed Combustion Modeling Using Flamelet Generated Manifolds
,”
Prog. Energy Combust. Sci.
,
57
, pp.
30
74
.
3.
Zhang
,
H.
,
Han
,
C.
,
Ye
,
T.
, and
Ren
,
Z.
,
2016
, “
Large Eddy Simulation of Turbulent Premixed Combustion Using Tabulated Detailed Chemistry and Presumed Probability Density Function
,”
J. Turbul.
,
17
(
3
), pp.
327
355
.
4.
Gampert
,
M.
,
Schaefer
,
P.
,
Narayanaswamy
,
V.
, and
Peters
,
N.
,
2013
, “
Gradient Trajectory Analysis in a Jet Flow for Turbulent Combustion Modeling
,”
J. Turbul.
,
14
(
1
), pp.
147
164
.
5.
Battista
,
F.
,
Troiani
,
G.
, and
Picano
,
F.
,
2015
, “
Fractal Scaling of Turbulent Premixed Flame Fronts: Application to LES
,”
Int. J. Heat Fluid Flow.
,
51
, pp.
78
87
.
6.
Kelsall
,
G.
, and
Troger
,
C.
,
2004
, “
Prediction and Control of Combustion Instabilities in Industrial Gas Turbines
,”
Appl. Therm. Eng.
,
24
(
11–12
), pp.
1571
1582
.
7.
Meier
,
W.
,
Weigand
,
P.
,
Duan
,
X. R.
, and
Giezendanner-Thoben
,
R.
,
2007
, “
Detailed Characterization of the Dynamics of Thermo Acoustic Pulsations in a Lean Premixed Swirl Flame
,”
Combust. Flame.
,
150
(
1–2
), pp.
2
26
.
8.
Arndt
,
C. M.
,
Steinberg
,
A. M.
,
Boxx
,
I. G.
,
Meier
,
W.
,
Aigner
,
M.
, and
Carter
,
C. D.
,
2010
, “
Flow-Field and Flame Dynamics of a Gas Turbine Model Combustor During Transition Between Thermo-Acoustically Stable and Unstable States
,”
ASME
Paper No. GT2010-22830.
9.
Albouze
,
G.
,
Poinsot
,
T.
, and
Gicquel
,
L.
,
2009
, “
Chemical Kinetics Modeling and LES Combustion Model Effects on a Perfectly Premixed Burner
,”
C. R. Mec.
,
337
(
6–7
), pp.
318
328
.
10.
Fiorina
,
B.
,
Vicquelin
,
R.
,
Auzillon
,
P.
, and
Darabiha
,
N.
,
2010
, “
A Filtered Tabulated Chemistry Model for LES of Premixed Combustion
,”
Combust. Flame
,
157
(
3
), pp.
465
475
.
11.
Lecocq
,
G.
,
Richard
,
S.
,
Colin
,
O.
, and
Vervisch
,
L.
,
2011
, “
Hybrid Presumed PDF and Flame Surface Density Approaches for Large-Eddy Simulation of Premixed Turbulent Combustion—Part 1: Formalism and Simulation of a Quasi-Steady Burner
,”
Combust. Flame.
,
158
(
6
), pp.
1201
1214
.
12.
Moureau
,
V.
,
Domingo
,
P.
, and
Vervisch
,
L.
,
2011
, “
From Large-Eddy Simulation to Direct Numerical Simulation of a Lean Premixed Swirl Flame: Filtered Laminar flame-PDF Modeling
,”
Combust. Flame.
,
158
(
7
), pp.
1340
1357
.
13.
Galpin
,
J.
,
Naudin
,
A.
,
Vervisch
,
L.
,
Angelberger
,
C.
,
Colin
,
O.
, and
Domingo
,
P.
,
2008
, “
Large-Eddy Simulation of a Fuel-Lean Premixed Turbulent Swirl-Burner
,”
Combust. Flame.
,
155
(
1–2
), pp.
247
266
.
14.
Roux
,
S.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Meier
,
U.
, and
Bérat
,
C.
,
2005
, “
Studies of Mean and Unsteady Flow in a Swirled Combustor Using Experiments, Acoustic Analysis, and Large Eddy Simulations
,”
Combust. Flame.
,
141
(
1–2
), pp.
40
54
.
15.
Wang
,
P.
,
Platova
,
N. A.
,
Fröhlich
,
J.
, and
Maas
,
U.
,
2014
, “
Large Eddy Simulation of the PRECCINSTA Burner
,”
Int. J. Heat Mass Tran
,
70
(
3
), pp.
486
495
.
16.
Wang
,
P.
,
Fröhlich
,
J.
,
Maas
,
U.
,
He
,
Z. X.
, and
Wang
,
C. J.
,
2016
, “
A Detailed Comparison of Two Sub-Grid Scale Combustion Models Via Large Eddy Simulation of the PRECCINSTA Gas Turbine Model Combustor
,”
Combust. Flame.
,
164
(
2
), pp.
329
345
.
17.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids.
,
12
(
7
), pp.
1843
1863
.
18.
Wang
,
G.
,
Boileau
,
M.
, and
Veynante
,
D.
,
2011
, “
Implementation of a Dynamic Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Combust. Flame
,
158
(
11
), pp.
2199
2213
.
19.
Hernández
,
I.
,
Staffelbach
,
G.
,
Poinsot
,
T.
,
Casado
,
J. C. R.
, and
Kok
,
J. B. W.
,
2013
, “
LES and Acoustic Analysis of Thermo-Acoustic Instabilities in a Partially Premixed Model Combustor
,”
C. R. Mec.
,
341
(
1–2
), pp.
121
130
.
20.
Sengissen
,
A. X.
,
Kampen
,
J. F. V.
,
Huls
,
R. A.
,
Stoffels
,
G. G. M.
,
Kok
,
J. B. W.
, and
Poinsot
,
T. J.
,
2007
, “
LES and Experimental Studies of Cold and Reacting Flow in a Swirled Partially Premixed Burner With and Without Fuel Modulation
,”
Combust. Flame.
,
150
(
1–2
), pp.
40
53
.
21.
Zhang
,
K.
,
Shang
,
M. T.
,
Luo
,
K.
, and
Fan
,
J. R.
,
2012
, “
Large-Eddy Simulation of Methane/Air Non-Premixed Combustion Using Dynamically Full Thickened Flame Model
,”
J. Eng. Thermophys.
,
33
(
10
), pp.
1823
1826
.
22.
Butler
,
T. D.
, and
O'Rourke
,
P. J.
,
1977
, “
A Numerical Method for Two Dimensional Unsteady Reacting Flows
,”
Proc. Combust. Inst.
,
16
(
1
), pp.
1503
1515
.
23.
Kuenne
,
G.
,
Ketelheun
,
A.
, and
Janicka
,
J.
,
2011
, “
LES Modeling of Premixed Combustion Using a Thickened Flame Approach Coupled With FGM Tabulated Chemistry
,”
Combust. Flame.
,
158
(
9
), pp.
1750
1767
.
24.
Boileau
,
M.
,
Staffelbach
,
G.
,
Cuenot
,
B.
,
Poinsot
,
T.
, and
Bérat
,
C.
,
2008
, “
LES of an Ignition Sequence in a Gas Turbine Engine
,”
Combust. Flame.
,
154
(
1–2
), pp.
2
22
.
25.
Veynante
,
D.
, and
Vervisch
,
L.
,
2011
, “
Turbulent Combustion Modeling
,”
Prog. Energy Combust. Sci.
,
28
(
3
), pp.
193
266
.
26.
Galassi
,
R. M.
,
Valorani
,
M.
,
Najm
,
H. N.
,
Safta
,
C.
,
Khalil
,
M.
, and
Ciottoli
,
P. P.
,
2017
, “
Chemical Model Reduction Under Uncertainty
,”
Combust. Flame.
,
179
, pp.
242
252
.
27.
Ciottoli
,
P. P.
,
Galassi
,
R. M.
,
Lapenna
,
P. E.
,
Leccese
,
G.
,
Bianchi
,
D.
,
Nasuti
,
F.
,
Creta
,
F.
, and
Valorani
,
M.
,
2017
, “
CSP-Based Chemical Kinetics Mechanisms Simplification Strategy for Non-Premixed Combustion: An Application to Hybrid Rocket Propulsion
,”
Combust. Flame.
,
186
, pp.
83
93
.
28.
Sun
,
W.
, and
Ju
,
Y.
,
2017
, “
A Multi-Timescale and Correlated Dynamic Adaptive Chemistry and Transport (CO-DACT) Method for Computationally Efficient Modeling of Jet Fuel Combustion With Detailed Chemistry and Transport
,”
Combust. Flame.
,
184
(
10
), pp.
297
311
.
29.
Bravo
,
L.
,
Wijeyakulasuriya
,
S.
,
Pomraning
,
E.
,
Senecal
,
P. K.
, and
Kweon
,
C. B.
,
2016
, “
Large Eddy Simulation of High Reynolds Number Nonreacting and Reacting JP-8 Sprays in a Constant Pressure Flow Vessel With a Detailed Chemistry Approach
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032207
.
30.
Franzelli
,
B.
,
Riber
,
E.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame
,”
Combust. Flame.
,
159
(
2
), pp.
621
637
.
31.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K. U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame.
,
137
(
4
), pp.
489
505
.
32.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
, and
Hanson
,
R. T.
,
1999
, “
GRI version 3.0
,” accessed Oct. 11, 2018, http://combustion.berkeley.edu/gri-mech/version30/text30.html
33.
Wang
,
P.
,
Fröhlich
,
J.
,
Michelassi
,
V.
, and
Rodi
,
W.
,
2008
, “
Large-Eddy Simulation of Variable-Density Turbulent Axisymmetric Jets
,”
Int. J. Heat Fluid Flow.
,
29
(
3
), pp.
654
664
.
34.
Wang
,
P.
,
Frölich
,
J.
, and
Maas
,
U.
,
2010
, “
Impact of Location and Flow Rate Oscillation of the Pilot Jet on the Flow Structures in Swirling Premixed Flames
,”
J. Turbul.
,
11
(N11), pp.
1
19
.
35.
Maas
,
U.
, and
Warnatz, J.
,
1988
, “
Ignition Processes in Hydrogen Oxygen Mixtures
,”
Combust. Flame.
,
74
(1), pp. 53–69.
36.
Zhu
,
J.
,
1991
, “
A Low-Diffusive and Oscillation-Free Convection Scheme
,”
Commun,” Appl. Numer. Methods
,
7
(
3
), pp.
225
232
.
37.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
,
1991
, “
A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A
,
3
(
11
), pp.
2746
2757
.
You do not currently have access to this content.