The introduction of natural gas (NG) in the road transport market is proceeding through bifuel vehicles, which, endowed of a double-injection system, can run either with gasoline or with NG. A third possibility is the simultaneous combustion of NG and gasoline, called double-fuel (DF) combustion: the addition of methane to gasoline allows to run the engine with stoichiometric air even at full load, without knocking phenomena, increasing engine efficiency of about 26% and cutting pollutant emissions by 90%. The introduction of DF combustion into series production vehicles requires, however, proper engine calibration (i.e., determination of DF injection and spark timing maps), a process which is drastically shortened by the use of computer simulations (with a 0D two zone approach for in-cylinder processes). An original knock onset prediction model is here proposed to be employed in zero-dimensional simulations for knock-safe performances optimization of engines fueled by gasoline-NG mixtures or gasoline-methane mixtures. The model takes into account the negative temperature coefficient (NTC) behavior of fuels and has been calibrated using a considerable amount of knocking in-cylinder pressure cycles acquired on a Cooperative Fuel Research (CFR) engine widely varying compression ratio (CR), inlet temperature, spark advance (SA), and fuel mixture composition, thus giving the model a general validity for the simulation of naturally aspirated or supercharged engines. As a result, the auto-ignition onset is predicted with maximum and mean error of 4.5 and 1.4 crank angle degrees (CAD), respectively, which is a negligible quantity from an engine control standpoint.

References

References
1.
Iodice
,
P.
, and
Senatore
,
A.
,
2015
, “
Appraisal of Pollutant Emissions and Air Quality State in a Critical Italian Region: Methods and Results
,”
Environ. Prog. Sustainable Energy
,
34
(
5
), pp.
1497
1505
.
2.
Ducci
,
D.
,
Albanese
,
S.
,
Boccia
,
L.
,
Celentano
,
E.
,
Cervelli
,
E.
,
Corniello
,
A.
,
Crispo
,
A.
,
De Vivo
,
B.
,
Iodice
,
P.
,
Langella
,
C.
,
Lima
,
A.
,
Manno
,
M.
,
Palladino
,
M.
,
Pindozzi
,
S.
,
Rigillo
,
M.
,
Romano
,
N.
,
Sellerino
,
M.
,
Senatore
,
A.
,
Speranza
,
G.
,
Fiorentino
,
N.
, and
Fagnano
,
M.
,
2017
, “
An Integrated Approach for the Environmental Characterization of a Wide Potentially Contaminated Area in Southern Italy
,”
Int. J. Environ. Res. Public Health
,
14
(
7
), p.
693
.
3.
ICCT
,
2015
, “
European Vehicle Market Statistics Pocketbook 2015/16
,” International Council on Clean Transportation Europe, San Francisco CA, accessed Nov. 25, 2015, http://eupocketbook.theicct.org
4.
Cammalleri
,
M.
, and
Rotella
,
D.
,
2017
, “
Functional Design of Power-Split CVTs: An Uncoupled Hierarchical Optimized Model
,”
Mech. Mach. Theory
,
116
, pp.
294
309
.
5.
Pipitone
,
E.
, and
Beccari
,
S.
,
2010
, “
Performances and Emissions Improvement of an S.I. Engine Fuelled by LPG/Gasoline Mixtures
,”
SAE
Paper No. 2010-01-0615
.
6.
Pipitone
,
E.
, and
Beccari
,
S.
,
2009
, “
Performances Improvement of a S. I. CNG bi-Fuel Engine by Means of Double-Fuel Injection
,”
SAE
Paper No. 2009-24-0058
.
7.
Obiols
,
J.
,
Soleri
,
D.
,
Dioc
,
N.
, and
Moreau
,
M.
,
2011
, “
Potential of Concomitant Injection of CNG and Gasoline on a 1.6 L Gasoline Direct Injection Turbocharged Engine
,”
SAE
Technical Paper No. 2011-01-1995
.
8.
Momeni Movahed
,
M.
,
Basirat Tabrizi
,
H.
, and
Mirsalim
,
M.
,
2014
, “
Experimental Investigation of the Concomitant Injection of Gasoline and CNG in a Turbocharged Spark Ignition Engine
,”
Energy Convers. Manage.
,
80
, pp.
126
136
.
9.
Veiga
,
M.
,
Mansano
,
R.
,
Silva
,
R.
, and
Gomes
,
C.
,
2010
, “
Injection System for Tri-Fuel Engines With Control of Power by Simultaneous Use of CNG and Ethanol or Gasoline
,”
SAE
Paper No. 2010-36-0195.
10.
Pipitone
,
E.
,
Beccari
,
S.
, and
Genchi
,
G.
,
2015
, “
A Refined Model for Knock Onset Prediction in Spark Ignition Engines Fuelled With Mixtures of Gasoline and Propane
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
111501
.
11.
Pipitone
,
E.
,
Genchi
,
G.
, and
Beccari
,
S.
,
2015
, “
An NTC Zone Compliant Knock Onset Prediction Model for Spark Ignition Engines
,”
Energy Procedia
,
82
, pp.
133
140
.
12.
Moses
,
E.
,
Yarin
,
A. L.
, and
Bar-Yoseph
,
P.
,
1995
, “
On Knocking Prediction in Spark Ignition Engines
,”
Combust. Flame
,
101
(3), pp.
239
261
.
13.
Westbrook
,
C. K.
, and
Pitz
,
W. J.
,
1990
, “
Modeling of Knock in Spark-Ignition Engines
,”
Int. Symp. Comodia
,
90
, pp.
11
20
.https://www.researchgate.net/publication/255117441_Modeling_of_knock_in_spark-ignition_engines
14.
Prince
,
J. C.
, and
Williams
,
F. A.
,
2012
, “
Short Chemical-Kinetic Mechanisms for Low-Temperature Ignition of Propane and Ethane
,”
Combust. Flame
,
159
(
7
), pp.
2336
2344
.
15.
Fisher
,
E. M.
,
Pitz
,
W. J.
,
Curran
,
H. J.
, and
Westbrook
,
C. K.
,
2000
, “
Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels
,”
Proc. Combust. Inst.
,
28
(2), pp.
1579
1586
.
16.
Linvengood
,
J. C.
, and
Wu
,
P. C.
,
1955
, “
Correlation of Autoignition Phenomenon in Internal Combustion Engines and Rapid Compression Machines
,”
Symposium (International) on Combustion
,
5
(1), pp.
347
356
.
17.
Boehman
,
A. L.
, and
Corre
,
O. L.
,
2008
, “
Combustion of Syngas in Internal Combustion Engines
,”
Combust. Sci. Technol.
,
180
(
6
), pp.
1193
1206
.
18.
Douaud
,
A. M.
, and
Eyzat
,
P.
, “
Four-Octane-Number Method for Predicting the Anti-Knock Behaviour of Fuels and Engines
,”
SAE
Paper No. 780080
.
19.
Christian
,
L.
,
2005
, “
Numerical and Experimental Study of Flame Propagation and Knock in a Compressed Natural Gas Engine
,”
Ph.D. thesis
, Swiss Federal Institute of Technology, Zurich, Switzerland.
20.
Scott Wayne
,
W.
,
Clark
,
N. N.
, and
Atkinson
,
C.
, 1998, “
Numerical Prediction of Knock in a Bi-Fuel Engine
,”
SAE
Paper No. 982533.
21.
Kukkadapu
,
G.
,
Kumar
,
K.
,
Sung
,
C.-J.
,
Mehl
,
M.
, and
Pitz
,
W. J.
,
2012
, “
Experimental and Surrogate Modeling Study of Gasoline Ignition in a Rapid Compression Machine
,”
Combust. Flame
,
159
(
10
), pp.
3066
3078
.
22.
Gallagher
,
S. M.
,
Curran
,
H. J.
,
Metcalfe
,
W. K.
,
Healy
,
D.
,
Simmie
,
J. M.
, and
Bourque
,
G.
,
2008
, “
A Rapid Compression Machine Study of the Oxidation of Propane in the Negative Temperature Coefficient Regime
,”
Combust. Flame
,
153
(
1–2
), pp.
316
333
.
23.
Radu
,
B.
,
Martin
,
G.
,
Chiriac
,
R.
, and
Apostolescu
,
N.
,
2005
, “
On the Knock Characteristics of LPG in a Spark Ignition Engine
,”
SAE
Paper No. 2005-01-3773
.
24.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engines Fundamentals
(Mcgraw-Hill Automotive Technology Series), 2nd ed., McGraw-Hill Education, New York.
25.
Ramos
,
J. I.
,
1999
,
Internal Combustion Engine Modeling
,
Butterworth-Heinemann Limited
, Oxford, UK.
26.
FiewegerBlumenthal
,
K.
, and
Adomeit
,
R. G.
,
1997
, “
Self-Ignition of S.I. Engine Model Fuels: A Shock Tube Investigation at High Pressure
,”
Combust. Flame
,
109
(
4
), pp.
599
619
.
27.
Mehl
,
M.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
, and
Curran
,
H. J.
,
2011
, “
Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
193
200
.
28.
Huang
,
J.
,
Hill
,
P. G.
,
Bushe
,
W. K.
, and
Munshi
,
S. R.
,
2004
, “
Shock-Tube Study of Methane Ignition Under Engine-Relevant Conditions: Experiments and Modelling
,”
Combust. Flame
,
136
(
1–2
), pp.
25
42
.
29.
American Petroleum Institute (API)
,
1988
,
Alcohols and Ethers
,
2nd ed.
,
American Petroleum Institute
,
Washington, DC
.
30.
Anderson
,
J. E.
,
Kramer
,
U.
,
Mueller
,
S. A.
, and
Wallington
,
T. J.
,
2010
, “
Octane Numbers of Ethanol-and Methanol-Gasoline Blends Estimated From Molar Concentrations
,”
Energy Fuels
,
24
(
12
), pp.
6576
6585
.
31.
Lanje
,
A. S.
, and
Deshmukh
,
M. J.
,
2012
, “
Performance and Emission Characteristics of SI Engine Using LPG-Ethanol: A Review
,”
Int. J. Emerging Technol. Adv. Eng.
,
2
(
10
), pp.
25
42
.http://docplayer.net/40903753-Performance-and-emission-characteristics-of-si-engine-using-lpg-ethanol-blends-a-review.html
32.
Kubesh
,
J.
,
King
,
S.
, and
Liss
,
W.
,
1992
, “
Effect of Gas Composition on Octane Number of Natural Gas Fuels
,”
SAE
Paper No. 922359
.
33.
Genchi
,
G.
, and
Pipitone
,
E.
,
2014
, “
Octane Rating of Natural Gas-Gasoline Mixtures on CFR Engine
,”
SAE Int. J. Fuels Lubr.
,
7
(
3
), pp.
1041
1049
.
34.
Nikolaou
,
N.
,
Papadopoulos
,
C. E.
,
Gaglias
,
I. A.
, and
Pitarakis
,
K. G.
,
2004
, “
A New Non-Linear Calculation Method of Isomerisation Gasoline Research Octane Number Based on Gas Chromatographic Data
,”
Fuel
,
83
(
4–5
), pp.
517
523
.
35.
ASTM
,
2011
, “
Standard Test Method for Motor Octane Number of Spark Ignition Engine Fuel
,” American Society for Testing and Materials,
West Conshohocken, PA
, Standard No.
ASTM D2700-18
.http://www.astm.org/cgi-bin/resolver.cgi?D2700-18
36.
Draper
,
C. S.
, 1935, “
The Physical Effects of Detonation in a Closed Cylindrical Chamber
,” National Advisory Committee for Aeronautics, Boston, MA, Technical Report No.
493
.http://naca.central.cranfield.ac.uk/reports/1935/naca-report-493.pdf
37.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.
You do not currently have access to this content.