The flow in intake manifold of a heavily downsized internal combustion engine has increased levels of unsteadiness due to the reduction of cylinder number and manifold arrangement. The turbocharger compressor is thus exposed to significant pulsating backpressure. This paper studies the response of a centrifugal compressor to this unsteadiness using an experimentally validated numerical method. A computational fluid dynamic (CFD) model with the volute and impeller is established and validated by experimental measurements. Following this, an unsteady three-dimensional (3D) simulation is conducted on a single passage imposed by the pulsating backpressure conditions, which are obtained by one-dimensional (1D) unsteady simulation. The performance of the rotor passage deviates from the steady performance and a hysteresis loop, which encapsulates the steady condition, is formed. Moreover, the unsteadiness of the impeller performance is enhanced as the mass flow rate reduces. The pulsating performance and flow structures near stall are more favorable than those seen at constant backpressure. The flow behavior at points with the same instantaneous mass flow rate is substantially different at different time locations on the pulse. The flow in the impeller is determined by not only the instantaneous boundary condition but also by the evolution history of flow field. This study provides insights in the influence of pulsating backpressure on compressor performance in actual engine situations, from which better turbo-engine matching might be benefited.

References

1.
Lake
,
T.
,
Stokes
,
J.
,
Murphy
,
R.
,
Osborne
,
R.
, and
Schamel
,
A.
,
2004
, “
Turbocharging Concepts for Downsized DI Gasoline Engines
,”
SAE
Paper No. 0148-7191.
2.
Oakes
,
W. C.
,
Lawless
,
P. B.
,
Fagan
,
J. R.
, and
Fleeter
,
S.
,
2002
, “
High-Speed Centrifugal Compressor Surge Initiation Characterization
,”
J. Propul. Power
,
18
(
5
), pp.
1012
1018
.
3.
Hazby
,
H. R.
, and
Xu
,
L.
,
2009
, “
Role of Tip Leakage in Stall of a Transonic Centrifugal Impeller
,”
ASME
No. GT2009-59372
.
4.
Semlitsch
,
B.
, and
Mihăescu
,
M.
,
2016
, “
Flow Phenomena Leading to Surge in a Centrifugal Compressor
,”
Energy
,
103
, pp.
572
587
.
5.
Liu
,
J. P.
,
Yang
,
H. Q.
,
Zhao
,
Z. C.
,
Jian-Qin
,
F. U.
, and
Ying-Chun
,
L. I.
,
2011
, “
Engine Gas Dynamic Similarity Based on Fundamental Pressure Wave Actions
,”
Trans. CSICE
,
29
(
4
), pp.
313
320
.
6.
Silvestri
,
J. J.
,
Morel
,
T.
, and
Costello
,
M.
,
1994
, “
Study of Intake System Wave Dynamics and Acoustics by Simulation and Experiment
,”
J. Paediatr. Child Health
,
47
(
4
), pp.
624
627
.
7.
Marelli
,
S.
,
Capobianco
,
M.
, and
Zamboni
,
G.
,
2014
, “
Pulsating Flow Performance of a Turbocharger Compressor for Automotive Application
,”
Int. J. Heat Fluid Flow
,
45
, pp.
158
165
.
8.
Barrera-Medrano
,
M. E.
,
Newton
,
P.
,
Martinez-Botas
,
R.
,
Rajoo
,
S.
,
Tomita
,
I.
, and
Ibaraki
,
S.
,
2017
, “
Effect of Exit Pressure Pulsation on the Performance and Stability Limit of a Turbocharger Centrifugal Compressor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052601
.
9.
Brun
,
K.
, and
Kurz
,
R.
,
2010
, “
Analysis of the Effects of Pulsations on the Operational Stability of Centrifugal Compressors in Mixed Reciprocating and Centrifugal Compressor Stations
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
072402
.
10.
Marelli
,
S.
,
Carraro
,
C.
, and
Capobianco
,
M.
,
2012
, “
Effect of Pulsating Flow Characteristics on Performance and Surge Limit of Automotive Turbocharger Compressors
,”
SAE Int. J. Engines
,
5
(
2
), pp.
596
601
.
11.
Galindo
,
J.
,
Climent
,
H.
,
Guardiola
,
C.
, and
Tiseira
,
A.
,
2009
, “
On the Effect of Pulsating Flow on Surge Margin of Small Centrifugal Compressors for Automotive Engines
,”
Exp. Therm. Fluid Sci.
,
33
(
8
), pp.
1163
1171
.
12.
Mccroskey
,
W. J.
,
1981
, “
The Phenomenon of Dynamic Stall
,” NASA Ames Research Center, Moffett Field, CA, NASA Technical Memorandum No.
81264
.https://ntrs.nasa.gov/search.jsp?R=19810011501
13.
Carr
,
L. W.
, and
Chandrasekhara
,
M. S.
,
2016
, “
Compressibility Effects on Dynamic Stall
,”
Prog. Aerosp. Sci.
,
32
(
6
), pp.
523
573
.
14.
Carr
,
L. W.
,
2012
, “
Progress in Analysis and Prediction of Dynamic Stall
,”
J. Aircr.
,
25
(
1
), pp.
6
17
.
15.
Ekaterinaris
,
J. A.
, and
Platzer
,
M. F.
,
1998
, “
Computational Prediction of Airfoil Dynamic Stall
,”
Prog. Aerosp. Sci.
,
33
(
11–12
), pp.
759
846
.
16.
Akbari
,
M. H.
, and
Price
,
S. J.
,
2003
, “
Simulation of Dynamic Stall for a NACA 0012 Airfoil Using a Vortex Method
,”
J. Fluids Struct.
,
17
(
6
), pp.
855
874
.
17.
Geissler
,
W.
, and
Haselmeyer
,
H.
,
2006
, “
Investigation of Dynamic Stall Onset
,”
Aerosp. Sci. Technol.
,
10
(
7
), pp.
590
600
.
18.
Mccroskey
,
W. J.
,
Carr
,
L. W.
, and
Mcalister
,
K. W.
,
1976
, “
Dynamic Stall Experiments on Oscillating Airfoils
,”
AIAA J.
,
14
(
1
), pp.
57
63
.
19.
Bourgeois
,
J. A.
,
Martinuzzi
,
R. J.
,
Savory
,
E.
,
Zhang
,
C.
, and
Roberts
,
D. A.
,
2010
, “
Assessment of Turbulence Model Predictions for an Aero-Engine Centrifugal Compressor
,”
ASME J. Turbomach.
,
133
(
1
), p.
011025
.
20.
Zheng
,
X.
,
Zhang
,
Y.
,
Yang
,
M.
,
Bamba
,
T.
, and
Tamaki
,
H.
,
2012
, “
Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetrical Flow Control—Part II: Nonaxisymmetrical Self-Recirculation Casing Treatment
,”
ASME J. Turbomach.
,
135
(
2
), p.
021007
.
21.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME
No. GT2010-22540
.
22.
Kügeler
,
E.
,
Weber
,
A.
,
Nürnberger
,
D.
, and
Engel
,
K.
,
2008
, “
Influence of Blade Fillets on the Performance of a 15 Stage Gas Turbine Compressor
,”
ASME
No. GT2008-50748
.
23.
Zheng
,
X.
,
Huenteler
,
J.
,
Yang
,
M.
,
Zhang
,
Y.
, and
Bamba
,
T.
,
2010
, “
Influence of the Volute on the Flow in a Centrifugal Compressor of a High-Pressure Ratio Turbocharger
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
224
, pp.
1157
1169
.
24.
Yang
,
M.
,
Gu
,
Y.
,
Deng
,
K.
,
Yang
,
Z.
, and
Liu
,
S.
, “
Influence of Altitude on Two-Stage Turbocharging System in a Heavy-Duty Diesel Engine Based on Analysis of Available Flow Energy
,”
Appl. Therm. Eng.
,
129
, pp.
12
21
.
25.
Bozza
,
F.
,
Bellis
,
V. D.
,
Marelli
,
S.
, and
Capobianco
,
M.
,
2011
, “
1D Simulation and Experimental Analysis of a Turbocharger Compressor for Automotive Engines Under Unsteady Flow Conditions
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1365
1384
.
26.
Romagnoli
,
A.
,
Martinezbotas
,
R. F.
, and
Rajoo
,
S.
,
2010
, “
Turbine Performance Studies for Automotive Turbochargers—Part 2: Unsteady Analysis
,” Ninth International Conference on Turbochargers and Turbocharging, London, May 19–20.
27.
Costall
,
A.
,
Szymko
,
S.
,
Martinez-Botas
,
R. F.
,
Filsinger
,
D.
, and
Ninkovic
,
D.
,
2006
, “
Assessment of Unsteady Behavior in Turbocharger Turbines
,”
ASME
Paper No. GT2006-90348
.
28.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2007
,
Internal Flow: Concepts and Applications
, Vol.
3
,
Cambridge University Press
,
Cambridge, UK
.
29.
Yamada
,
K.
,
Tamagawa
,
Y.
,
Fukushima
,
H.
,
Furukawa
,
M.
,
Ibaraki
,
S.
, and
Iwakiri
,
K.
,
2010
, “
Comparative Study on Tip Clearance Flow Fields in Two Types of Transonic Centrifugal Compressor Impeller With Splitter Blades
,”
ASME
Paper No. GT2010-23345.
You do not currently have access to this content.