This effort develops a surrogate modeling approach for predicting the effects of manufacturing variations on performance and unsteady loading of a transonic turbine. Computational fluid dynamics (CFD) results from a set of 105 as-manufactured turbine blade geometries are used to train and validate the surrogate models. Blade geometry variation is characterized with point clouds gathered from a structured light, optical measurement system and as-measured CFD grids are generated through mesh morphing of the nominal design grid data. Principal component analysis (PCA) of the measured airfoil geometry variations is used to create a reduced basis of independent surrogate model parameters. It is shown that the surrogate model typically captures between 60% and 80% of the CFD predicted variance. Three new approaches are introduced to improve surrogate effectiveness. First, a zonal PCA approach is defined which investigates surrogate accuracy when limiting analysis to key regions of the airfoil. Second, a training point reduction strategy is proposed that is based on the kd tree nearest neighbor search algorithm and reduces the required training points up to 38% while only having a small impact on accuracy. Finally, an alternate reduction approach uses k-means clustering to effectively select training points and reduces the required training points up to 66% with a small impact on accuracy.

References

References
1.
Clark
,
J. P.
,
Beck
,
J. A.
,
Kaszynski
,
A. A.
,
Still
,
A.
, and
Ni
,
R.-H.
,
2018
, “
The Effect of Manufacturing Variations on Unsteady Interactions in a Transonic Turbine
,”
ASME J. Turbomach.
,
140
(
6
), p. 061007.
2.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gummer
,
V.
,
2010
, “
Probabilistic CFD Simulation of a High-Pressure Compressor Stage Taking Manufacturing Variability Into Account
,”
ASME
Paper No. GT2010-22484
.
3.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gummer
,
V.
,
2012
, “
Impact of Manufacturing Variability and Nonaxisymmetry on High-Pressure Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p. 032504.
4.
Scharfenstein
,
J.
,
Heinze
,
K.
,
Voigt
,
M.
,
Vogeler
,
K.
, and
Meyer
,
M.
,
2013
, “
Probabilistic CFD Analysis of High Pressure Turbine Blades Considering Real Geometric Effects
,”
ASME
Paper No. GT2013-94161
.
5.
Gorelik
,
M.
,
Obayomi
,
J.
,
Slovisky
,
J.
,
Frias
,
D.
,
Swanson
,
H.
,
McFarland
,
J.
,
Enright
,
M.
, and
Riha
,
D.
,
2013
, “
Effect of Manufacturing Variability on Turbine Engine Performance: A Probabilistic Study
,”
ASME
Paper No. GT2013-95145
.
6.
Panizza
,
A.
,
Valente
,
R.
,
Rubino
,
D.
, and
Tapinassi
,
L.
,
2016
, “
Impact of Manufacturing Variability on the Aerodynamic Performance of a Centrifugal Compressor Stage With Curvilinear Blades
,”
ASME
Paper No. GT2016-57791
.
7.
Panizza
,
A.
,
Iurisci
,
G.
,
Sassanelli
,
G.
, and
Sivasubramaniyan
,
S.
,
2012
, “
Performance Uncertainty Quantification for Centrifugal Compressors—Part 1: stage Performance Variation
,”
ASME
Paper No. GT2012-680361
.
8.
Panizza
,
A.
,
Rubino
,
D.
, and
Tapinassi
,
L.
,
2014
, “
Efficient Uncertainty Quantification of Centrifugal Compressor Performance Using Polynomial Chaos
,”
ASME
Paper No. GT2014-25081
.
9.
van Lil
,
T.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Wacker
,
C.
, and
Rockstroh
,
U.
,
2012
, “
Probabilistic Analysis of a Radial Gear Compressor
,”
ASME
Paper No. GT2012-69647
.
10.
Buche
,
D.
,
Beetz
,
M.
, and
Ribi
,
B.
,
2010
, “
Uncertainty Analysis for Large-Scale Industrial Radial Compressor
,”
ASME
Paper No. GT2010-22918
.
11.
Javed
,
A.
,
Pecnick
,
R.
, and
van Buijtenen
,
J.
,
2016
, “
Optimization of a Centrifugal Compressor Impeller for Robustness to Manufacturing Uncertainties
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p. 112101.
12.
Zamboni
,
G.
,
Banks
,
G.
, and
Bather
,
S.
,
2016
, “
Gradient-Based Adjoint and Design of Experiment CFD Methodologies to Improve the Manufacturability of High Pressure Turbine Blades
,”
ASME
Paper No. GT2016-56042
.
13.
Xiong
,
J.
,
Yang
,
J.
,
McBean
,
I.
,
Havakechian
,
S.
, and
Liu
,
F.
,
2016
, “
Statistical Evaluation of the Performance Impact of Manufacturing Variations for Steam Turbines
,”
ASME
Paper No. GT2016-56553
.
14.
Marcu
,
B.
,
Tran
,
K.
, and
Wright
,
B.
,
2002
, “
Prediction of Unsteady Loads and Analysis of Flow Changes Due to Turbine Blade Manufacturing Variations During the Development of Turbines for the MB-XX Advanced Upper Stage Engine
,”
AIAA
Paper No. 2002-4162
.
15.
Schnell
,
R.
,
Lengyel-Kampmann
,
T.
, and
Nicke
,
E.
,
2013
, “
On the Impact of Geometric Variability on Fan Aerodynamic Performance, Unsteady Blade Row Interaction, and Its Mechanical Characteristics
,”
ASME J. Turbomach.
,
136
(
9
), p. 091005.
16.
Clark
,
J. P.
,
Aggarwala
,
A. S.
,
Velonis
,
M. A.
,
Magge
,
S. S.
, and
Price
,
F. R.
,
2002
, “
Using CFD to Reduce Resonant Stresses on a Single-Stage, High-Pressure Turbine Blade
,”
ASME
Paper No. GT2002-30320
.
17.
Brown
,
J. M.
,
Slater
,
J.
, and
Grandhi
,
R. V.
,
2003
, “
Probabilistic Analysis of Geometric Uncertainty Effects on Blade Modal Response
,”
ASME
Paper No. GT2003-38577
.
18.
Brown
,
J. M.
, and
Grandhi
,
R. V.
,
2005
, “
Probabilistic High Cycle Fatigue Assessment Process for Integrally Bladed Rotors
,”
ASME
Paper No. GT2005-69022
.
19.
Beck
,
J. A.
,
Brown
,
J. M.
,
Cross
,
C. J.
, and
Slater
,
J. C.
,
2013
, “
Probabilistic Mistuning Assessment Using Nominal and Geometry Based Mistuning Methods
,”
ASME J. Turbomach.
,
135
(
5
), p. 051004.
20.
Beck
,
J. A.
,
Brown
,
J. M.
,
Cross
,
C. J.
, and
Slater
,
J. C.
,
2014
, “
Component-Mode Reduced-Order Models for Geometric Mistuning of Integrally Bladed Rotors
,”
AIAA J.
,
52
(
7
), pp.
1345
1356
.
21.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2015
, “
Experimental Validation of a Mesh Quality Optimized Morphed Geometric Mistuning Model
,”
ASME
Paper No. GT2015-43150
.
22.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2013
, “
Uncertainties of an Automated Optical 3D Geometry Measurement, Modeling, and Analysis Process for Mistuned Integrally Bladed Rotor Reverse Engineering
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p. 102504.
23.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2014
, “
Automated Finite Element Model Mesh Updating Scheme Applicable to Mistuning Analysis
,”
ASME
Paper No. GT2014-26925
.
24.
Clark
,
J. P.
,
Koch
,
P. J.
,
Ooten
,
M. K.
,
Johnson
,
J. J.
,
Dagg
,
J.
,
McQuilling
,
M. W.
,
adn
,
P. D.
, and
Johnson
,
F. H.
,
2009
, “
Design of Turbine Components to Answer Research Questions in Unsteady Aerodynamics and Heat Transfer
,” WPAFB, OH, AFRL Report No. AFRL-RZ-WP-TR-2009-2180.
25.
Ooten
,
M. K.
,
Anthony
,
R. J.
,
Lethander
,
A. T.
, and
Clark
,
J. P.
,
2015
, “
Unsteady Aerodynamic Interaction in a Closely Coupled Turbine Consistent With Contrarotation
,”
ASME J. Turbomach.
,
138
(
6
), p. 061004.
26.
Ni
,
R.-H.
,
Humber
,
W.
,
Ni
,
M.
,
Capece
,
V. R.
,
Ooten
,
M. K.
, and
Clark
,
J. P.
,
2016
, “
Aerodynamic Dynamic Predictions for Oscillating Airfoils in Cascades Using Moving Meshes
,”
ASME
Paper No. GT2016-57017
.
27.
Hancock
,
B. J.
, and
Clark
,
J. P.
,
2014
, “
Reducing Shock Interactions in Transonic Turbine Via Three-Dimensional Aerodynamic Shaping
,”
AIAA J. Propul. Power
,
30
(
5
), pp.
1248
1256
.
28.
Lange
,
A.
,
Vogeler
,
K.
,
Gummer
,
V.
,
Schrapp
,
H.
, and
Clemen
,
C.
,
2009
, “
Introduction of a Parameter Based Compressor Blade Model for Considering Measured Geometry Uncertainties in Numerical Simulation
,”
ASME
Paper No. GT2009-59937
.
You do not currently have access to this content.