A novel test facility has been designed and setup for the investigation of the influence of stationary temperature, and thus thermally induced stress gradients with respect to the damage evolution of cooled gas turbine components. Thermally induced stress gradients differ from geometrically induced stress gradients. From the point of view of stress mechanics, they are independent from external loads. From the perspective of material mechanics, their impact on service life is influenced by locally different material properties and strength. However, the impact of thermally induced stress gradients on the cyclic life of high loaded, cooled components is not precisely known. In order to increase knowledge surrounding these mechanisms, a research project was launched. To achieve high temperature gradients and extended mechanical stress gradients, large heat fluxes are required. The authors developed a test bench with a unique radiant heating to achieve very high heat fluxes of q˙ ≥ 1.6 MW/m2 on cylindrical specimen. Special emphasis has been placed on homogenous temperature and loading conditions in order to achieve valid test results comparable to standard low-cycle or thermo-mechanical fatigue tests. Different test concepts of the literature were reviewed and the superior performance of the new test rig concept was demonstrated. The austenitic stainless steel 316 L was chosen as the model material for commissioning and validation of the test facility. The investigation of thermally induced stress gradients and, based on this analysis, low-cycle fatigue (LCF) tests with superimposed temperature gradients were conducted. Linear elastic finite element studies were performed to calculate the local stress–strain field and the service life of the test specimens. The test results show a considerable influence of the temperature gradient on the LCF life of the investigated material. Both the temperature variation over the specimen wall and thermally induced stresses (TIS) are stated to be the main drivers for the change in LCF life. The test results increase the understanding of fatigue damage mechanisms under local unsteady conditions and can serve as a basis for improved lifetime calculation methods.

References

References
1.
Serrano
,
L.
,
Scholz
,
A.
,
Müller
,
F.
,
Berger
,
C.
,
Schweizer
,
C.
,
Schlesinger
,
M.
, and
Eckmann
,
S.
, 2011, “
TMF-Rissverhalten.Rissverhalten Unter Anisothermen Beanspruchungsbedingungen—Berechn-Ungsverfahren Für Nickelbasislegierungen
,” Forschungsvereinigung Verbrennungskraftmaschinen e.V., Frankfurt, Germany, Report No. 945.
2.
Holländer
,
D.
,
2017
, “
Experimentelles Verfahren zur Charakterisierung des einachsigen Ermüdungsverhaltens auf Basis miniaturisierter Prüfkörper und Anwendung auf Hochtemperatur-Legierungen der Energietechnik
,” Logos Verlag, Berlin.
3.
Bartsch
,
M.
,
Baufeld
,
B.
,
Heinzelmann
,
M.
,
Karlsson
,
A. M.
,
Dalkilic
,
S.
, and
Chernova
,
L.
,
2007
, “
Multiaxial Thermo‐Mechanical Fatigue on Material Systems for Gas Turbines
,”
Materialwiss. Werkstofftech.
,
38
(
9
), pp.
712
719
.
4.
Bartsch
,
M.
,
Baufeld
,
B.
,
Dalkilic
,
S.
,
Chernova
,
L.
, and
Heinzelmann
,
M.
,
2008
, “
Fatigue Cracks in a Thermal Barrier Coating System on a Superalloy in Multiaxial Thermomechanical Testing
,”
Int. J. Fatigue
,
30
(
2
), pp.
211
218
.
5.
Trunova
,
O.
,
Beck
,
T.
,
Herzog
,
R.
,
Steinbrech
,
R. W.
, and
Singheiser
,
L.
,
2008
, “
Damage Mechanisms and Lifetime Behavior of Plasma Sprayed Thermal Barrier Coating Systems for Gas Turbines—Part I: Experiments
,”
Surf. Coat. Technol.
,
202
(
20
), pp.
5027
5032
.
6.
Beck
,
T.
,
Trunova
,
O.
,
Herzog
,
R.
, and
Singheiser
,
L.
,
2012
, “
TBCs for Gas Turbines Under Thermomechanical Loadings: Failure Behaviour and Life Prediction
,”
EPJ Web of Conferences
,
33
, p. 02001.
7.
Aleksanoglu
,
H.
,
Scholz
,
A.
,
Oechsner
,
M.
,
Berger
,
C.
,
Rudolphi
,
M.
,
Schütze
,
M.
, and
Stamm
,
W.
, 2013, “
Determining a Critical Strain for APS Thermal Barrier Coatings Under Service Relevant Loading Conditions
,”
Int. J. Fatigue
,
53
, pp. 40–48.
8.
Holländer
,
D.
,
Kulawinski
,
D.
,
Weidner
,
A.
,
Thiele
,
M.
,
Biermann
,
H.
, and
Gampe
,
U.
,
2016
, “
Small-Scale Specimen Testing for Fatigue Life Assessment of Service-Exposed Industrial Gas Turbine Blades
,”
Int. J. Fatigue
,
92
, pp.
262
271
.
9.
Hou
,
N. X.
,
Yu
,
Q. M.
,
Wen
,
Z. X.
, and
Yue
,
Z. F.
,
2010
, “
Low Cycle Fatigue Behavior of Single Crystal Superalloy With Temperature Gradient
,”
Eur. J. Mech.-A/Solids
,
29
(
4
), pp.
611
618
.
10.
Chaboche
,
J. L.
,
Culie
,
J. P.
,
Gallerneau
,
F.
,
Nouailhas
,
D.
,
Pacou
,
D.
, and
Poirier
,
D.
,
1997
, “
Thin Wall Thermal Gradient: Experimental Study, FE Analysis and Fatigue Life Prediction
,” Fifth International Conference on Biaxial/Multiaxial Fatigue and Fracture Cracow, Cracow, Poland, Sept. 8–12.
11.
Siddiqui
,
S.-F.
,
Siddiqui
,
S. F.
,
Knipe
,
K.
,
Manero
,
A.
,
Meid
,
C.
,
Wischek
,
J.
,
Okasinski
,
J.
,
Almer
,
J.
,
Karlson
,
A.-M.
,
Bartsch
,
M.
, and
Raghavan
,
S.
,
2013
, “
Synchrotron X-Ray Measurement Techniques for Thermal Barrier Coated Cylindrical Samples Under Thermal Gradients
,”
Rev. Sci. Instrum.
,
84
(
8
), p.
083904
.
12.
Kitazawa
,
R.
,
Tanaka
,
M.
,
Kagawa
,
Y.
, and
Liu
,
Y. F.
,
2010
, “
Damage Evolution of TBC System Under in-Phase Thermo-Mechanical Tests
,”
Mater. Sci. Eng.: B
,
173
(
1–3
), pp.
130
134
.
13.
Guesdon
,
C.
,
2005
, “
Entwicklung Eines Strahlungsofens Zur Untersuchung Der Thermochemischen Extraktion Von Nichteisen-Metallen Aus Sulfiden
,” Ph.D. thesis, University of Augsburg, Augsburg, Germany.
14.
Petrasch
,
J.
,
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Häberling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
,
2007
, “
A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
ASME J. Sol. Energy Eng.
,
129
(
4
), pp.
405
411
.
15.
Han
,
J.-C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
16.
Weser
,
S.
,
Gampe
,
U.
,
Raddatz
,
M.
,
Parchem
,
R.
, and
Lukas
,
P.
,
2011
, “
Advanced Experimental and Analytical Investigations on Combined Cycle Fatigue (CCF) of Conventional Cast and Single-Crystal Gas Turbine Blade
,”
ASME
Paper No. GT2011-45171.
17.
Thiele
,
M.
,
Thiele
,
M.
,
Weser
,
S.
,
Gampe
,
U.
,
Parchem
,
R.
, and
Forest
,
S.
,
2012
, “
Advancement of Experimental Methods and Cailletaud Material Model for Life Prediction of Gas Turbine Blades Exposed to Combined Cycle Fatigue
,”
ASME
Paper No. GT2012-68452.
18.
Gnielinski
,
V.
,
2013
, “
G7 Querumströmte Einzelne Rohrreihen Und Rohrbündel
,”
VDI-Wärmeatlas
,
Springer
,
Berlin
, pp.
819
824
.
19.
Degeilh
,
R.
,
2013
, “
Développement Expérimental Et Modélisation D'un Essai De Fatigue Avec Gradient Thermique De Paroi Pour Application Aube De Turbine Monocristalline
,” dissertation. École normale supérieure de Cachan-ENS Cachan, Cachan, France.
20.
Davies
,
J.
, and
Simpson
,
P.
,
1979
,
Induction Heating Handbook
,
McGraw-Hill Companies
, Berlin.
21.
Brendel
,
T.
,
Affeldt
,
E.
,
Hammer
,
J.
, and
Rummel
,
C.
,
2008
, “
Temperature Gradients in TMF Specimens. Measurement and Influence on TMF Life
,”
Int. J. Fatigue
,
30
(
2
), pp.
234
240
.
22.
Howell
,
J. R.
,
Pinar Menguc
,
M.
, and
Siegel
,
R.
,
2010
,
Thermal Radiation Heat Transfer
,
CRC Press
, Boca Raton, FL.
23.
Rehn
,
H.
,
2004
, “
Optical Properties of Elliptical Reflectors
,”
Opt. Eng.
,
43
(
7
), pp.
1480
1488
.
24.
Thiele
,
M.
, and
Gampe, U.
,
2013
, “
Prüfvorrichtung Und Hochfokussierende Heizvorrichtung Zur Erzeugung Hoher Wärmestromdichten
,” DE Patent No. DE 10 2013 113 600.1.
25.
ASTM
,
2004
, “
Standard Practice for Strain Controlled Thermomechanical Fatigue Testing
,” American Society for Testing and Materials, West Conshohocken, PA, Standard No.
E2368-04
.
26.
Hähner
,
P.
,
Affeldt
,
E.
,
Beck
,
T.
,
Klingelhöffer
,
H.
,
Loveday
,
M.
, and
Rinaldi
,
C.
,
2006
, “
Validated Code-of-Practice for Strain-Controlled Thermo-Mechanical Fatigue Testing
,” Institute for Energy, Petten, The Netherlands, EC-Report No. EUR 22281 EN.
27.
Technisches Datenblatt
,
2012
, “
Pyromark 2500 Flat Black Testing
,” Helling GmbH, Heidgraben, Germany.
28.
IEC
,
2013
, “
Thermocouples—Part 1: EMF Specifications and Tolerances
,” CENELEC, Dublin, Ireland, Standard No.
IEC 60584-1:2013
.https://infostore.saiglobal.com/preview/is/en/2013/i.s.en60584-1-2013.pdf?sku=1699474
29.
Bae, K. H.
, and
Lee, S. B.
,
2011
, “
The Effect of Specimen Geometry on the Low Cycle Fatigue Life of Metallic Materials
,”
Mater. High Temperatures
,
28
(
1
), pp.
33
39
.
30.
Conway
,
J.-B.
,
Stentz
,
R. H.
, and
Berling
,
J. T.
,
1975
,
Fatigue, Tensile, and Relaxation Behavior of Stainless Steels
,
Mar-Test
,
Cincinnati, OH
.
31.
Tavernelli
,
J. F.
,
Tavernelli
,
J. F.
, and
Coffin
,
L. F.
,
1962
, “
Experimental Support for Generalized Equation Predicting Low Cycle Fatigue
,”
J. Basic Eng.
,
84
(
4
), pp.
533
537
.
32.
Forman
,
R. G.
,
Forman, R. G.
, and
Shivakumar, V.
,
1986
, “
Growth Behavior of Surface Cracks in the Circumferential Plane of Solid and Hollow Cylinders
,”
Fracture Mechanics: Seventeenth Volume
,
ASTM International
, West Conshohocken, PA.
33.
Nezakat
,
M.
,
Nezakat
,
M.
,
Akhiani
,
H.
,
Penttilä
,
S.
,
Sabet
,
S. M.
, and
Szpunar
,
J.
,
2015
, “
Effect of Thermo-Mechanical Processing on Oxidation of Austenitic Stainless Steel 316 L in Supercritical Water
,”
Corros. Sci.
,
94
, pp.
197
206
.
You do not currently have access to this content.