Over recent decades, the variability and high costs of the traditional gas turbine fuels (e.g., natural gas) have pushed operators to consider low-grade fuels for running heavy-duty frames. Synfuels, obtained from coal, petroleum, or biomass gasification, could represent valid alternatives in this sense. Although these alternatives match the reduction of costs and, in the case of biomass sources, would potentially provide a CO2 emission benefit (reduction of the CO2 capture and sequestration costs), these low-grade fuels have a higher content of contaminants. Synfuels are filtered before the combustor stage, but the contaminants are not removed completely. This fact leads to a considerable amount of deposition on the nozzle vanes due to the high temperature value. In addition to this, the continuous demand for increasing gas turbine efficiency determines a higher combustor outlet temperature. Current advanced gas turbine engines operate at a turbine inlet temperature (TIT) of (1400–1500) °C, which is high enough to melt a high proportion of the contaminants introduced by low-grade fuels. Particle deposition can increase surface roughness, modify the airfoil shape, and clog the coolant passages. At the same time, land-based power units experience compressor fouling, due to the air contaminants able to pass through the filtration barriers. Hot sections and compressor fouling work together to determine performance degradation. This paper proposes an analysis of the contaminant deposition on hot gas turbine sections based on machine nameplate data. Hot section and compressor fouling are estimated using a fouling susceptibility criterion. The combination of gas turbine net power, efficiency, and TIT with different types of synfuel contaminants highlights how each gas turbine is subjected to particle deposition. The simulation of particle deposition on 100 gas turbines ranging from 1.2 MW to 420 MW was conducted following the fouling susceptibility criterion. Using a simplified particle deposition calculation based on TIT and contaminant viscosity estimation, the analysis shows how the correlation between type of contaminant and gas turbine performance plays a key role. The results allow the choice of the best heavy-duty frame as a function of the fuel. Low-efficiency frames (characterized by lower values of TIT) show the best compromise in order to reduce the effects of particle deposition in the presence of high-temperature melting contaminants. A high-efficiency frame is suitable when the contaminants are characterized by a low-melting point thanks to their lower fuel consumption.

References

References
1.
Suman
,
A.
,
Morini
,
M.
,
Aldi
,
N.
,
Casari
,
N.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
A Compressor Fouling Review Based on an Historical Survey of ASME Turbo Expo Papers
,”
ASME J. Turbomach.
,
139
(
4
), p.
041005
.
2.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanisms in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032401
.
3.
Schnittger
,
J. R.
,
1962
, “
The New 40-MW Gas Turbine of the Vastervik Central Station
,”
ASME
Paper No. 62-GTP-1
.
4.
Whitlow
,
G. A.
,
Lee
,
S. Y.
,
Mulik
,
P. R.
,
Wenglarz
,
R. A.
,
Sherlock
,
T. P.
, and
Cohn
,
A. A.
,
1983
, “
Combustion Turbine Deposition Observations From Residual and Simulated Residual Oil Studies
,”
ASME J. Eng. Gas Turbines Power
,
105
(
1
), pp.
88
96
.
5.
Wenglarz
,
R. A.
, and
Cohn
,
A.
,
1983
, “
Turbine Deposition Evaluations Using Simplified Tests
,”
ASME
Paper No. 83-GT-115
.
6.
Wenglarz
,
R. A.
,
1985
, “
Deposition, Erosion and Corrosion Protection for Coal-Fired Gas Turbines
,”
ASME
Paper No. 85-IGT-61
.
7.
Bons
,
J. P.
,
Crosby
,
J.
,
Wammack
,
J. E.
,
Bentley
,
B. I.
, and
Fletcher
,
T. H.
,
2007
, “
High-Pressure Turbine Deposition in Land-Based Gas Turbines From Various Synfuels
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
135
143
.
8.
Bowden
,
A. T.
,
Draper
,
P.
, and
Rowling
,
H.
,
1953
, “
The Problem of Fuel-Oil Ash Deposition in Open-Cycle Gas Turbines
,”
Proc. Inst. Mech. Eng.
,
167
(
1
), pp.
291
312
.
9.
Wenglarz
,
R. A.
, and
Fox Jr
,
R.
,
1990a
, “
G. Chemical Aspects of Deposition/Corrosion From Coal-Water Fuels Under Gas Turbine Conditions
,”
ASME J. Eng. Gas Turbines Power
,
112
(
1
), pp.
1
8
.
10.
Wenglarz
,
R. A.
, and
Fox Jr
,
R.
,
1990b
, “
G. Physical Aspects of Deposition From Coal-Water Fuels Under Gas Turbine Conditions
,”
ASME J. Eng. Gas Turbines Power
,
112
(
1
), pp.
9
14
.
11.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2008
, “
Effects of Temperature and Particle Size on Deposition in Land Based Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
051503
.
12.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2010
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition With Application to a Leading Edge Turbine Vane
,”
ASME
Paper No. GT2010-23655
.
13.
Tabakoff
,
W.
,
1984
, “
Review-Turbomachinery Performance Deterioration Exposed to Solid Particulates Environment
,”
ASME J. Fluids Eng.
,
106
(
2
), pp.
125
134
.
14.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Bromley
,
A. F.
,
2009
, “
The Fouling of Axial Flow Compressors—Causes, Effects, Susceptibility and Sensitivity
,”
ASME
Paper No. GT2009-59239
..
15.
Unger
,
D.
, and
Herzog
,
H.
,
1998
, “
Comparative Study on Energy R&D Performance: Gas Turbine Case Study
,” Final report prepared for Central Research Institute of Electric Power Industry (CRIEPI), Massachusetts Institute of Technology, Cambridge, MA.
16.
Morini
,
M.
, and
Venturini
,
M.
,
2012
, “
An Innovative Inlet Air Cooling System for IGCC Power Augmentation—Part I: Analysis of IGCC Plant Components
,”
ASME
Paper No. GT2012-68346
. .
17.
Morini
,
M.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2012
, “
An Innovative Inlet Air Cooling System for IGCC Power Augmentation—Part II: Thermodynamic Analysis
,”
ASME
Paper No. GT2012-68352
.
18.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Vaccari
,
A.
,
2013
, “
An Innovative Inlet Air Cooling System for IGCC Power augmentation—Part III: Computational Fluid Dynamic Analysis of Syngas Combustion in Nitrogen-Enriched Air
,”
ASME
Paper No. GT2013-94094
. .
19.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Vaccari
,
A.
, and
Venturini
,
M.
,
2015
, “
Feasibility Analysis of Gas turbine inlet air Cooling by Means of Liquid Nitrogen Evaporation for IGCC Power Augmentation
,”
Appl. Therm. Eng.
,
80
, pp.
168
177
.
20.
Phyllis2
, 2017, “
Database for Biomass and Waste
,” Energy Research Centre, Petten, The Netherlands, accessed on Aug. 30, 2017, https://www.ecn.nl/phyllis2
21.
Ai
,
W.
,
Laycock
,
R. G.
,
Rappleye
,
D. S.
,
Fletcher
,
T. H.
, and
Bons
,
J. P.
,
2011
, “
Effect of Particle Size and Trench Configuration on Deposition From Fine Coal Flyash Near Film Cooling Holes
,”
Energy Fuels
,
25
(
3
), pp.
1066
1076
.
22.
Ai
,
W.
,
Murray
,
N.
,
Fletcher
,
T. H.
,
Harding
,
S.
,
Lewis
,
S.
, and
Bons
,
J. P.
,
2012
, “
Deposition Near Film Cooling Holes on a High Pressure Turbine Vane
,”
ASME J. Turbomach.
,
134
(
4
), p.
041013
.
23.
Ai
,
W.
,
Murray
,
N.
,
Fletcher
,
T. H.
,
Harding
,
S.
, and
Bons
,
J. P.
,
2012
, “
Effect of Hole Spacing on Deposition of Fine Coal Flyash Near Film Cooling Holes
,”
ASME J. Turbomach.
,
134
(
4
), p.
041021
.
24.
Laycock
,
R. G.
, and
Fletcher
,
T. H.
,
2013
, “
Time-Dependent Deposition Characteristics of Fine Coal Fly Ash in a Laboratory Gas Turbine Environment
,”
ASME J. Turbomach.
,
135
(
2
), p.
021003
..
25.
Anderson
,
R. J.
,
Romanowsky
,
C. J.
, and
France
,
J. E.
,
1984
, “
The Adherence of Ash Particles From the Combustion of Micronized Coal
,” Morgantown Energy Technology Center, Morgantown, WV, Report No. DOE/METC-85/2007 (DE85008600).
26.
Trent
,
V. A.
,
Medlin
,
J. H.
,
Coleman
,
S. L.
, and
Stanton
,
R. W.
,
1982
,
Chemical Analyses and Physical Properties of 12 Coal Samples from the Pocahontas Field
(Geological Survey Bulletin 1528),
United States Government Printing Office
,
Washington, DC
.
27.
Yin
,
C.
,
Luo
,
Z.
,
Ni
,
M.
, and
Cen
,
K.
,
1998
, “
Predicting Coal Ash Fusion Temperature With a Back-Propagation Neural Network Model
,”
Fuel
,
77
(
15
), pp.
1777
1782
.
28.
Walsh
,
P. M.
,
Sayre
,
A. N.
,
Loehden
,
D. O.
,
Monroe
,
L. S.
,
Beér
,
J. M.
, and
Sarofim
,
A. F.
,
1990
, “
Deposition of Bituminous Coal Ash on an Isolated Heat Exchanger Tube: Effects of Coal Properties on Deposit Growth
,”
Prog. Energy Combust. Sci.
,
16
(
4
), pp.
327
345
.
29.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2011
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition in Turbine Gas Hotpath
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
201
211
.
30.
Barker
,
B.
,
Casady
,
P.
,
Shankara
,
P.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2012
, “
Coal Ash Deposition on Nozzle Guide Vanes-Part II: Computational Modeling
,”
ASME J. Turbomach.
,
135
(
1
), p.
011014
.
31.
Birello
,
F.
,
Borello
,
D.
,
Venturini
,
P.
, and
Rispoli
,
F.
,
2013
, “
Modelling of Deposit Mechanisms Around the Stator of a Gas Turbine
,”
ASME
Paper No. GT2013-95688
. .
32.
Borello
,
D.
,
D'Angeli
,
L.
,
Salvagni
,
A.
,
Venturini
,
P.
, and
Rispoli
,
F.
,
2014
, “
Study of Particles Deposition in Gas Turbine Blades in Presence of Film Cooling
,”
ASME
Paper No. GT2014-26250
.
33.
Prenter
,
R.
,
Whitaker
,
S. M.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2014
, “
The Effects of Slot Film Cooling on Deposition on a Nozzle Guide Vane
,”
ASME
Paper No. GT2014-27171
.
34.
Zagnoli
,
D.
,
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2015
, “
Numerical Study of Deposition in a Full Turbine Stage Using Steady and Unsteady Methods
,”
ASME
Paper No. GT2015-43613
.
35.
Dowd
,
C.
,
Tafti
,
D.
, and
Kuahai
,
Y.
,
2017
, “
Sand Transport and Deposition in Rotating Two-Passed Ribbed Duct With Coriolis and Centrifugal Buoyancy Forces at RE=100,000
,”
ASME
Paper No. GT2017-63167
.
36.
Taltavull
,
C.
,
Dean
,
J.
, and
Clyne
,
T. W.
,
2016
, “
Adhesion of Volcanic Ash Particles Under Controlled Conditions and Implications for Their Deposition in Gas Turbines
,”
Adv. Eng. Mater.
,
18
(
5
), pp.
803
813
.
37.
Mills
,
K. C.
, and
Sridhar
,
S.
,
1999
, “
Viscosities of Ironmaking and Steelmaking Slags
,”
Ironmaking Steelmaking
,
26
(
4
), pp.
262
268
.
38.
Duffy
,
J. A.
, and
Ingram
,
M. D.
,
1975
, “
Optical Basicity—IV: Influence of Electronegativity on the Lewis Basicity and Solvent Properties of Molten Oxyanion Salts and Glasses
,”
J. Inorg. Nucl. Chem.
,
37
(
5
), pp.
1203
1206
.
39.
Zhang
,
G. H.
, and
Chou
,
K. C.
,
2010
, “
Simple Method for Estimating the Electrical Conductivity of Oxide Melts With Optical Basicity
,”
Metall. Mater. Trans. B: Process Metall. Mater. Process. Sci.
,
41
(
1
), pp.
131
136
.
40.
Hoy
,
H. R.
,
Roberts
,
A. G.
, and
Wilkins
,
D. M.
,
1965
, “
Behavior of Mineral Matter in Slagging Gasification Process
,”
J. Inst. Gas Eng.
,
5
, pp.
444
469
.
41.
Urbain
,
G.
,
Cambier
,
F.
,
Deletter
,
M.
, and
Anseau
,
M. R.
,
1981
, “
Viscosity of Silicate Melts
,”
Trans. J. Br. Ceram. Soc.
,
80
, pp.
139
141
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0019728706&partnerID=40&md5=a1fae7ab685c30804327f75cbca5c6a8.
42.
Senior
,
C. L.
, and
Srinivasachar
,
S.
,
1995
, “
Viscosity of Ash Particles in Combustion Systems for the Prediction of Particle Sticking
,”
Energy Fuels
,
9
(
2
), pp.
277
283
.
43.
Giordano
,
D.
,
Russell
,
J. K.
, and
Dingwell
,
D. B.
,
2008
, “
Viscosity of Magmatic Liquids: A Model
,”
Earth Planet. Sci. Lett.
,
271
(
1–4
), pp.
123
134
.
44.
Newby
,
R. A.
,
Bannister
,
R. L.
, and
Miao
,
F.
,
1996
, “
Westinghouse Combustion Turbine Performance in Coal Gasification Combined Cycles
,”
ASME
Paper No. 96-GT-231.
45.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2014
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition on a Transonic Axial Compressor Blade-Part I: Particle Zones Impact
,”
ASME J. Turbomach.
,
137
(
2
), p.
021009
.
46.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2015
, “
Quantitative Computational Fluid Dynamic Analyses of Particle Deposition on a Transonic Axial Compressor Blade—Part II: Impact Kinematics and Particle Sticking Analysis
,”
ASME J. Turbomach.
,
137
(
2
), p.
021010
.
47.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2016
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition on a Subsonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012603
.
48.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2016
, “
Estimation of the Particle Deposition on a Transonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012604
.
49.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
Estimation of the Particle Deposition on a Subsonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012604
.
You do not currently have access to this content.