Exhaust gases from an internal combustion engine (ICE) contain approximately 30% of the total energy released from combustion of the fuel. In order to improve fuel economy and reduce emissions, there are a number of technologies available to recover some of the otherwise wasted energy. The inverted Brayton cycle (IBC) is one such technology. The purpose of this study is to conduct a parametric experimental investigation of the IBC. The hot air from a turbocharger test facility is used. The system is sized to operate using the exhaust gases produced by a 2 l turbocharged engine at motorway cruise conditions. A number of parameters are investigated that impact the performance of the system such as turbine inlet temperature, system pressure drop, and compressor inlet temperature. The results confirm that the output power is strongly affected by the turbine inlet temperature and system pressure drop. The study also highlights the packaging and performance advantages of using an additively manufactured heat exchanger to reject the excess heat. Due to rotordynamic issues, the speed of the system was limited to 80,000 rpm rather than the target 120,000 rpm. However, the results show that the system can generate a specific work of up to 17 kJ/kg at 80,000 rpm. At full speed, it is estimated that the system can develop approximately 47 kJ/kg, which represents a thermal efficiency of approximately 5%.

References

References
1.
Kohler
,
C.
,
1919
, “
Verfahren Zum Betriebe Von Verbrennungsturbinen Mit Mehreren Druckstufen
,” Deutsches Patent No. 339590.
2.
Hingst
,
R.
,
1944
, “
Verfahren Zur Energieerzeugung Aus Gasen Und Gasdampfgemischen Niederen Druckes, z. B. Abgasen Von Brennkraftmaschinen
,” De
utsches
Patent No. 852015.
3.
Hodge
,
J.
,
1955
,
Cycles and Performance Estimation
,
Butterworths Scientific Publications
,
London
.
4.
Wilson
,
D. G.
, and
Dunteman
,
N. R.
,
1973
, “
The Inverted Brayton Cycle for Waste-Heat Utilization
,”
ASME
Paper No. 73-GT-90.
5.
Holmes
,
R. T.
,
1976
, “
An Inverted Brayton Cycle Application to Naval Marine Gas Turbines
,” MS thesis, Massachusetts Institute of Technology, Cambridge, MA.
6.
Frost
,
T.
,
Anderson
,
A.
, and
Agnew
,
B.
,
1997
, “
A Hybrid Gas Turbine Cycle (Brayton/Ericsson): an Alternative to Conventional Combined Gas and Steam Turbine Power Plant
,”
Proc. Inst. Mech. Eng., Part A
,
211
(
2
), pp.
121
131
.
7.
Tsujikawa
,
Y.
,
Ohtani
,
K.
,
Kaneko
,
K.
,
Watanabe
,
Y.
, and
Fujii
,
S.
,
1999
, “
Conceptual Recovery of Exhaust Heat From a Conventional Gas Turbine by an Inter-Cooled Inverted Brayton Cycle
,”
ASME
Paper No. 99-GT-378.
8.
Fujii
,
S.
,
Kaneko
,
K.
,
Otani
,
K.
, and
Tsujikawa
,
Y.
,
2001
, “
Mirror Gas Turbines: A Newly Proposed Method of Exhaust Heat Recovery
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
481
486
.
9.
Agnew
,
B.
,
Anderson
,
A.
,
Potts
,
I.
,
Frost
,
T.
, and
Alabdoadaim
,
M.
,
2003
, “
Simulation of Combined Brayton and Inverse Brayton Cycles
,”
Appl. Therm. Eng
,
23
(
8
), pp.
953
963
.
10.
Alabdoadaim
,
M.
,
Agnew
,
B.
, and
Alaktiwi
,
A.
,
2004
, “
Examination of the Performance Envelope of Combined Rankine, Brayton and Two Parallel Inverse Brayton Cycles
,”
Proc. Inst. Mech. Eng., Part A
,
218
(
6
), pp.
377
385
.
11.
Alabdoadaim
,
M.
,
Agnew
,
B.
, and
Potts
,
I.
,
2006
, “
Examination of the Performance of an Unconventional Combination of Rankine, Brayton and Inverse Brayton Cycles
,”
Proc. Inst. Mech. Eng., Part A
,
220
(
4
), pp.
305
313
.
12.
Alabdoadaim
,
M.
,
Agnew
,
B.
, and
Potts
,
I.
,
2006
, “
Performance Analysis of Combined Brayton and Inverse Brayton Cycles and Developed Configurations
,”
Appl. Therm. Eng
,
26
(
14–15
), pp.
1448
1454
.
13.
Bianchi
,
M.
,
Negri di Montenegro
,
G.
,
Peretto
,
A.
, and
Spina
,
P.
,
2005
, “
A Feasibility Study of Inverted Brayton Cycle for Gas Turbine Repowering
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
599
605
.
14.
Tsujikawa
,
Y.
,
Kaneko
,
K.
, and
Suzuki
,
J.
,
2004
, “
Proposal of the Atmospheric Pressure Turbine (APT) and High Temperature Fuel Cell Hybrid System
,”
JSME Int. J. Ser. B
,
47
(
2
), pp.
256
260
.
15.
Bianchi
,
M.
,
Negri di Montenegro
,
G.
, and
Peretto
,
A.
,
2002
, “
Inverted Brayton Cycle Employment for Low-Temperature Cogenerative Applications
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
561
565
.
16.
Copeland
,
C.
, and
Chen
,
Z.
,
2016
, “
The Benefits of an Inverted Brayton Bottoming Cycle as an Alternative to Turbocompounding
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
071701
.
17.
Bianchi
,
M.
, and
De Pascale
,
A.
,
2011
, “
Bottoming Cycles for Electric Energy Generation: Parametric Investigation of Available and Innovative Solutions for the Exploitation of Low and Medium Temperature Heat Sources
,”
Appl. Energy
,
88
(
5
), pp.
1500
1509
.
18.
Lu
,
P.
,
Brace
,
C.
,
Hu
,
B.
, and
Copeland
,
C.
,
2017
, “
Analysis and Comparison of the Performance of an Inverted Brayton Cycle and Turbocompounding With Decoupled Turbine and Continuous Variable Transmission Driven Compressor for Small Automotive Engines
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
072801
.
19.
Bhargava
,
R. K.
,
Bianchi
,
M.
, and
De Pascale
,
A.
,
2011
, “
Gas Turbine Bottoming Cycles for Cogenerative Applications: Comparison of Different Heat Recovery Cycle Solutions
,”
ASME
Paper No. GT2011-46236.
20.
Zheng
,
J.
,
Sun
,
F.
,
Chen
,
L.
, and
Wu
,
C.
,
2001
, “
Exergy Analysis for a Braysson Cycle
,”
Exergy Int. J.
,
1
(
1
), pp.
41
45
.
21.
Zhang
,
Z.
,
Chen
,
L.
, and
Sun
,
F.
,
2012
, “
Exergy Analysis for Combined Regenerative Brayton and Inverse Brayton Cycles
,”
Int. J. Energy Environ.
,
3
, pp.
715
730
.
22.
Chen
,
L.
,
Ni
,
D.
,
Zhang
,
Z.
, and
Sun
,
F.
,
2016
, “
Exergetic Performance Optimization for New Combined Intercooled Regenerative Brayton and Inverse Brayton Cycles
,”
Appl. Therm. Eng.
,
102
, pp.
447
453
.
23.
Henke
,
M.
,
Monz
,
T.
, and
Aigner
,
M.
,
2013
, “
Inverted Brayton Cycle With Exhaust Gas Recirculation—A Numerical Investigation
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091203
.
24.
Tanaka
,
K.
,
Inoue
,
K.
,
Kitajima
,
J.
,
Kazari
,
M.
,
Nitta
,
S.
,
Tsujikawa
,
Y.
, and
Kaneko
,
K.
,
2007
, “
The Development of 50 kW Output Power Atmospheric Pressure Turbine (APT)
,”
ASME
Paper No. GT2007-27783.
25.
Bianchi
,
M.
,
De Pascale
,
A.
, and
Negri di Montenegro
,
G.
,
2005
, “
Micro Gas Turbine Repowering With Inverted Brayton Cycle
,”
ASME
Paper No. GT2005-68550.
26.
Murray Bailey
,
M.
,
1985
, “
Comparative Evaluation of Three Alternative Power Cycles for Waste Heat Recovery From the Exhaust of Adiabatic Diesel Engines
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
NASA TM-86953
.https://ntrs.nasa.gov/search.jsp?R=19850023730
27.
Chen
,
Z.
,
Copeland
,
C.
,
Ceen
,
B.
,
Jones
,
S.
, and
Agurto Goya
,
A.
,
2017
, “
Modeling and Simulation of an Inverted Brayton Cycle as an Exhaust-Gas Heat-Recovery System
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
081701
.
28.
Agelidou
,
E.
,
Monz
,
T.
,
Huber
,
A.
, and
Aigner
,
M.
,
2017
, “
Experimental Investigation of an Inverted Brayton Cycle Micro Gas Turbine for CHP Application
,”
ASME
Paper No. GT2017-64490.
29.
Inoue
,
K.
,
Harada
,
E.
,
Kitajima
,
J.
, and
Tanaka
,
K.
,
2006
, “
Construction and Performance Evaluation of Prototype Atmospheric Pressure Turbine (APT)
,”
ASME
Paper No. GT2006-90938.
30.
SAE
,
1995
, “
SAE International Surface Vehicle Recommended Practice: Turbocharger Gas Stand Test Code
,” Society of Automotive Engineers, Warrendale, PA, SAE Standard No. J1826.
31.
SAE
,
1995
, “
SAE International Surface Vehicle Standard: Supercharger Testing Standard
,” Society of Automotive Engineers, Warrendale, PA, SAE Standard No. J1723.
32.
ASME
,
1997
, “
ASME Performance Test Code: Performance Test Code on Compressors and Exhausters
,” American Society of Mechanical Engineers, New York, ASME Standard No. PTC 10-1997.
33.
Brun
,
K.
, and
Kurz
,
R.
,
2001
, “
Measurement Uncertainties Encountered During Gas Turbine Driven Compressor Field Testing
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
62
69
.
34.
ISO
,
2005
, “
Measurement of Fluid Flow—Procedures for the Evaluation of Uncertainties
,” International Organization for Standardization, Geneva, Switzerland, Standard No. BS ISO 5168:2005.
35.
Olmeda
,
P.
,
Tiseira
,
A.
,
Dolz
,
V.
, and
García-Cuevas
,
L. M.
,
2015
, “
Uncertainties in Power Computations in a Turbocharger Test Bench
,”
Meas.
,
59
, pp.
363
371
.
36.
Guillou
,
E.
,
2013
, “
Uncertainty and Measurement Sensitivity of Turbocharger Compressor Gas Stands
,”
SAE
Paper No. 2013-01-0925
.
37.
Mohtar
,
H.
,
Chesse
,
P.
, and
Chalet
,
D.
,
2012
, “
Describing Uncertainties Encountered During Laboratory Turbocharger Compressor Tests
,”
Exp. Tech.
,
36
(
5
), pp.
53
61
.
38.
Olmeda
,
P.
,
Dolz
,
V.
,
Arnau
,
F. J.
, and
Reyes-Belmonte
,
M. A.
,
2013
, “
Determination of Heat Flows Inside Turbochargers by Means of a One Dimensional Lumped Model
,”
Math. Comput. Modell.
,
57
(
7–8
), pp.
1847
1852
.
You do not currently have access to this content.