Rotating detonation combustors (RDCs) offer theoretically a significant total pressure increase, which may result in enhanced cycle efficiency. The fluctuating exhaust of RDC, however, induces low supersonic flow and large flow angle fluctuations at several kHz, which affects the performance of the downstream turbine. In this paper, a numerical methodology is proposed to characterize a supersonic turbine exposed to fluctuations from RDC without any dilution. The inlet conditions of the turbine were extracted from a three-dimensional (3D) unsteady Reynolds-averaged Navier–Stokes simulation of a nozzle attached to a rotating detonation combustor, optimized for minimum flow fluctuations and a mass-flow averaged Mach number of 2 at the nozzle outlet. In a first step, a supersonic turbine able to handle steady Mach 2 inflow was designed based on a method of characteristics solver and total pressure loss was assessed. Afterward, unsteady simulations of eight stator passages exposed to periodic oblique shocks were performed. Total pressure loss was evaluated for several oblique shock frequencies and amplitudes. The unsteady stator outlet profile was extracted and used as inlet condition for the unsteady rotor simulations. Finally, a full stage unsteady simulation was performed to characterize the flow field across the entire turbine stage. Power extraction, airfoil base pressure, and total pressure losses were assessed, which enabled the estimation of the loss mechanisms in supersonic turbine exposed to large unsteady inlet conditions.

References

References
1.
Fan
,
W.
,
Yan
,
C.
,
Huang
,
X.
,
Zhang
,
Q.
, and
Zheng
,
L.
,
2003
, “
Experimental Investigation on Two-Phase Pulse Detonation Engine
,”
Combust. Flame
,
133
(
4
), pp.
441
450
.
2.
Ornano
,
F.
,
Braun
,
J.
,
Saracoglu
,
B. H.
, and
Paniagua
,
G.
,
2017
, “
Multi-Stage Nozzle-Shape Optimization for Pulsed Hydrogen-Air Detonation Combustor
,”
Adv. Mech. Eng.
,
9
(
2
), pp.
1
9
.
3.
Shao
,
Y.
,
Liu
,
M.
, and
Wang
,
J.-P.
,
2010
, “
Continuous Detonation Engine and Effects of Different Types of Nozzle on Its Propulsion Performance
,”
Chin. J. Aeronaut.
,
23
(
6
), pp.
647
652
.
4.
Davidenko
,
D. M.
,
Gokalp
,
I.
, and
Kudryavtsev
,
A. N.
,
2008
, “
Numerical Study of the Continuous Detonation Wave Rocket Engine
,”
AIAA
Paper No. AIAA 2008-2680
.
5.
Roy
,
A.
,
Ferguson
,
D. H.
,
Sidwell
,
T.
,
O'Meara
,
B.
,
Strakey
,
P.
,
Bedick
,
C.
, and
Sisler
,
A.
,
2017
, “
Experimental Study of Rotating Detonation Combustor Performance Under Preheat and Back Pressure Operation
,”
AIAA
Paper No. AIAA 2017-1065.
6.
Le Naour
,
B.
,
Falempin
,
F. H.
, and
Coulon
,
K.
,
2017
, “
MBDA R&T Effort Regarding Continuous Detonation Wave Engine for Propulsion—Status in 2016
,”
AIAA
Paper No. AIAA 2017-2325
.
7.
Eude
,
Y.
,
Davidenko
,
D. M.
,
Gokalp
,
I.
, and
Falempin
,
F.
,
2011
, “
Use of the Adaptive Mesh Refinement for 3D Simulations of a CDWRE (Continuous Detonation Wave Rocket Engine)
,”
AIAA
Paper No. AIAA 2011-2236
.
8.
Schwer
,
D.
, and
Kailasanath
,
K.
,
2011
, “
Numerical Investigation of the Physics of Rotating-Detonation-Engines
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2195
2202
.
9.
Schwer
,
D.
, and
Kailasanath
,
K.
,
2011
, “
Numerical Study of the Effects of Engine Size on Rotating Detonation Engines
,”
AIAA
Paper No. AIAA 2011-581
.
10.
Zhou
,
R.
, and
Wang
,
J.-P.
,
2013
, “
Numerical Investigation of Shock Wave Reflections Near the Head Ends of Rotating Detonation Engines
,”
Shock Waves
,
23
(
5
), pp.
461
472
.
11.
Frolov
,
S.
,
Dubrovskii
,
A.
, and
Ivanov
,
V.
,
2013
, “
Three-Dimensional Numerical Simulation of Operation Process in Rotating Detonation Engine
,”
Proc. Prog. Propul. Phys.
,
4
, pp.
467
488
.
12.
Dubrovskii
,
A.
,
Ivanov
,
V.
, and
Frolov
,
S.
,
2015
, “
Three-Dimensional Numerical Simulation of the Operation Process in a Continuous Detonation Combustor With Separate Feeding of Hydrogen and Air
,”
Russ. J. Phys. Chem. B
,
9
(
1
), pp.
104
119
.
13.
Cocks
,
P. A.
,
Holley
,
A. T.
, and
Rankin
,
B. A.
,
2016
, “
High Fidelity Simulations of a Non-Premixed Rotating Detonation Engine
,”
AIAA
Paper No. AIAA 2016-0125
.
14.
Fievisohn
,
R. T.
, and
Yu
,
K. H.
,
2016
, “
Steady-State Analysis of Rotating Detonation Engine Flowfields With the Method of Characteristics
,”
J. Propul. Power
,
33
(
1
), pp.
89
99
.
15.
Sousa
,
J.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2017
, “
Development of a Fast Evaluation Tool for Rotating Detonation Combustors
,”
Appl. Math. Modell.
,
52
, pp.
42
52
.
16.
Braun
,
J.
,
Saracoglu
,
B. H.
, and
Paniagua
,
G.
,
2016
, “
Unsteady Performance of Rotating Detonation Engines With Different Exhaust Nozzles
,”
J. Propul. Power
,
33
(
1
), pp.
121
130
.
17.
Braun
,
J.
,
Saavedra
,
J.
, and
Paniagua
,
G.
,
2017
, “
Evaluation of the Unsteadiness Across Nozzles Downstream of Rotating Detonation Combustors
,”
AIAA
Paper No. AIAA 2017-1063
.
18.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2017
, “
Performance of Axial Turbines Exposed to Large Fluctuations
,”
AIAA
Paper No.
AIAA 2017-4817.
19.
Fernelius
,
M. H.
, and
Gorrell
,
S. E.
,
2017
, “
Predicting Efficiency of a Turbine Driven by Pulsing Flow
,”
ASME
Paper No. GT2017-63490
.
20.
Paniagua
,
G.
,
Lorio
,
M. C.
,
Vinha
,
N.
, and
Sousa
,
J.
,
2014
, “
Design and Analysis of Pioneering High Supersonic Axial Turbines
,”
Int. J. Mech. Sci.
,
89
, pp.
65
77
.
21.
Sousa
,
J.
, and
Paniagua
,
G.
,
2015
, “
Entropy Minimization Design Approach of Supersonic Internal Passages
,”
Entropy
,
17
(
12
), pp.
5593
5610
.
22.
Kantrowitz
,
A.
, and
Donaldson
,
C.
,
1945
, “
Preliminary Investigation of Supersonic Diffusers
,” National Advisory Committee for Aeronautics, Langley Field, VA, Report No.
NACA-WR-L-713
.https://ntrs.nasa.gov/search.jsp?R=19930093667
23.
Sousa
,
J.
,
Paniagua
,
G.
, and
Saavedra
,
J.
,
2017
, “
Aerodynamic Response of Internal Passages to Pulsating Inlet Supersonic Conditions
,”
Comput. Fluids
,
149
, pp.
31
40
.
24.
Sousa
,
J.
,
Paniagua
,
G.
, and
Morata
,
E. C.
,
2017
, “
Thermodynamic Analysis of a Gas Turbine Engine With a Rotating Detonation Combustor
,”
Appl. Energy
,
195
, pp.
247
256
.
25.
Chakravarthy
,
S.
,
Peroomian
,
O.
,
Goldberg
,
U.
, and
Palaniswamy
,
S.
,
1998
, “
The CFD++ Computational Fluid Dynamic Software Suite
,” AIAA Paper No. 985564.
26.
Schulein
,
E.
,
Krogmann
,
P.
, and
Stanewsky
,
E.
,
1996
, “
Documentation of Two-Dimensional Impinging Shock/Turbulent Boundary Layer Interaction Flow
,” Institute of Aerodynamics and Flow Technology, Gottingen, Germany, Report No. DLR-IB 223-96 A 49.
27.
Schulein
,
E.
,
2004
, “
Optical Skin Friction Measurements in Short-Duration Facilities (Invited)
,”
AIAA
Paper No. AIAA 2004-2115
.
28.
Celik
,
I. B.
,
Ghia
,
U.
, and
Roache
,
P. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
29.
Clark
,
J. P.
, and
Grover
,
E. A.
,
2007
, “
Assessing Convergence in Predictions of Periodic-Unsteady Flowfields
,”
ASME J. Turbomach.
,
29
(
4
), pp.
740
749
.
30.
Klir
,
G. J.
, and
Yuan
,
B.
,
1995
,
Fuzzy Sets and Fuzzy Logic: Theory and Applications
,
Pretice-Hall
,
Upper Saddle River, NJ
.
31.
Delery
,
J.
, and
Dussauge
,
J.-P.
,
2009
, “
Some Physical Aspects of Shock Wave/Boundary Layer Interactions
,”
Shock Waves
,
19
(
6
), pp.
453
468
.
32.
Sousa
,
J.
,
Paniagua
,
G.
, and
Collado-Morata
,
E.
,
2017
, “
Analysis of the Aerodynamic Losses in a Supersonic Turbine
,”
ASME
Paper No. POWER-ICOPE2017-3624.
33.
Moeckel
,
W.
,
1949
, “
Approximate Method for Predicting Form and Location of Detached Shock Waves Ahead of Plane or Axially Symmetric Bodies
,” National Advisory Committee for Aeronautics, Cleveland, OH, Report No.
NACA-TN-1921
.https://ntrs.nasa.gov/search.jsp?R=19930082597
34.
Stewart
,
W.
,
1955
, “
Analysis of Two-Dimensional Compressible-Flow Loss Characteristics Downstream of Turbomachine Blade Rows in Terms of Boundary Layer Characteristics
,” National Advisory Committee for Aeronautics, Cleveland, OH, Report No.
NACA-TN-3515
.https://ntrs.nasa.gov/search.jsp?R=19930084222
35.
Startford
,
B. S.
, and
Beavers
,
G. S.
,
1955
, “
The Calculation of the Compressible Turbulent Boundary Layer in an Arbitrary Pressure Gradient—A Correlation of Certain Previous Methods
,” Aeronautical Research Council Reports and Memoranda, London, No.
3207
.http://naca.central.cranfield.ac.uk/reports/arc/rm/3207.pdf
36.
Kacker
,
S. C.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Eng. Power
,
104
(
1
), pp.
111
119
.
You do not currently have access to this content.