Increased public concerns and stricter regulatory frameworks promote the role of bioliquids (liquid fuel for energy purposes other than for transport, including electricity and heating and cooling, produced from biomass). This is a driving force for development and employment of micro-gas turbines (MGTs) due to their ability to combust bioliquids with less favorable properties in a decentralized manner. Gas turbines are characterized by relatively high combustion efficiency at relatively low concentrations of harmful emissions, relatively high effective efficiency and durability when utilizing a common portfolio of gas turbine approved fuels. It is thus desired to preserve these advantages of gas turbines also while burning bioliquids and further relying on their scalability that is crucial to efficient support of decentralized energy production at small scales. To support these objectives, MGT technology needs to allow for utilization of bioliquids with much wider spectrum of physical and chemical properties compared to common commercially available MGTs in a single MGT-based plant. In this view, the present study is providing the first thorough overview of challenges and solutions encountered by researchers across the wide area of bioliquids in MGTs.

References

References
1.
Soares
,
C.
,
2007
, “
Design and Components of Microturbines
,”
Microturbines
,
Elsevier
, Amsterdam, The Netherlands, pp.
9
19
.
2.
U.S. DOE
,
2016
, “Combined Heat and Power Technology Fact Sheet Series: Microturbines,” U.S. Department of Energy, Washington, DC, No. DOE/EE-1329.
3.
Goli
,
K. C.
,
Kondi
,
S. V.
, and
Timmanpalli
,
V. B.
,
2015
, “
Recent Trends in Mechanical Engineering Principles and Working of Microturbine
,” Recent Trends in Mechanical Engineering, pp.
1
7
.
4.
Nascimento
,
M. A. R.
,
De
,
L.
,
dos Santos
,
E. C.
,
Batista Gomes
,
E. E.
,
Goulart
,
F. L.
,
Gutirrez Velsques
,
E. I.
, and
Alexis Miranda
,
R.
,
2013
, “
Micro Gas Turbine Engine: A Review
,”
Progress in Gas Turbine Performance
,
D. E.
Benini
, ed.,
InTech
, London, p.
36
.
5.
Lymberopoulos
,
N.
,
2004
, “
Microturbines and Their Application in Bio-Energy
,” Project Technical Assistant Framework Contract (EESD Contract No: NNE5-PTA-2002-003/1, Centre for Renewable Energy Sources C.R.E.S, Pikermi Attiki, Greece.
6.
Colantoni
,
S.
,
Della Gatta
,
S.
,
De Prosperis
,
R.
,
Russo
,
A.
,
Fantozzi
,
F.
, and
Desideri
,
U.
,
2010
, “
Gas Turbines Fired With Biomass Pyrolysis Syngas: Analysis of the Overheating of Hot Gas Path Components
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061401
.
7.
Pilavachi
,
P.
,
2002
, “
Mini-and Micro-Gas Turbines for Combined Heat and Power
,”
Appl. Therm. Eng.
,
22
(
18
), pp.
2003
2014
.
8.
The European Parliament and The Council of The European Union,
2009
, “
Directive 2009/28/EC
,” European Council, Brussels, Belgium.
9.
The European Parliament and the Council of The European Union,
2009
, “
Directive 2009/30/EC
,” European Council, Brussels, Belgium.
10.
Tacconi
,
D.
,
Prussi
,
M.
,
Buffi
,
M.
, and
Chiaramonti
,
D.
,
2015
, “
Information Related to Economic, Social and Environmental Parameters
,” EU FP7 ITAKA Project, Madrid, Spain, Technical Report No.
199638
.https://cordis.europa.eu/result/rcn/199638_en.html
11.
Gerasimchuk
,
I.
,
2013
, “
Biofuel Policies and Feedstock in the EU
,” Chatham House, London.
12.
The European Commission, 2001, “
Commission Decision 2011/13/EU
,” European Council, Brussels, Belgium.
13.
The European Parliament and The Council of The European Union,
2010
, “
Commission Decision 2010/335/EU
,” Brussels, Belgium.
14.
The European Parliament and The Council of The European Union,
2014
, “
Commission Regulation 1307/2014
,” Brussels, Belgium.
15.
Flach
,
B.
,
Lieberz
,
S.
,
Rondon
,
M.
,
Williams
,
B.
, and
Teiken
,
C.
,
2015
, “
EU Biofuels Annual 2015 NL5028
,” Global Agricultural Information Network, Washington, DC.
16.
NL Agency
,
2011
, “
Sustainability Requirements for Biofuels and Biomass for Energy in EU and US Regulatory Frameworks
,”
NL Agency
, Utrecht, The Netherlands.
17.
Su
,
Y.
,
Zhang
,
P.
, and
Su
,
Y.
,
2015
, “
An Overview of Biofuels Policies and Industrialization in the Major Biofuel Producing Countries
,”
Renewable Sustainable Energy Rev.
,
50
, pp.
991
1003
.
18.
Iijima
,
M.
, and
Paulson
,
J.
,
2017
, “
Japan Biofuels Annual 2017
,” USDA Foreign Agricultural Service, Tokyo, Japan.
19.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
, “
Gas Turbine Combustion: Alternative Fuels and Emissions
,”
Gas Turbine Combustion
,
CRC Press
, Boca Raton, FL, pp.
443
511
.
20.
Boyce
,
M. P.
,
2012
,
Gas Turbine Engineering Handbook
,
Elsevier
, Amsterdam, The Netherlands.
21.
Jansohn
,
P.
,
2013
, “
Overview of Gas Turbine Types and Applications
,”
Modern Gas Turbine Systems
,
Elsevier
, Sawston, UK, pp.
21
43
.
22.
Blakey
,
S.
,
Rye
,
L.
, and
Wilson
,
C. W.
,
2011
, “
Aviation Gas Turbine Alternative Fuels: A Review
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2863
2885
.
23.
Chiaramonti
,
D.
,
Prussi
,
M.
,
Buffi
,
M.
, and
Tacconi
,
D.
,
2014
, “
Sustainable Bio Kerosene: Process Routes and Industrial Demonstration Activities in Aviation Biofuels
,”
Appl. Energy
,
136
, pp.
767
774
.
24.
Gupta
,
K. K.
,
Rehman
,
A.
, and
Sarviya
,
R. M.
,
2010
, “
Bio-Fuels for the Gas Turbine: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2946
2955
.
25.
García
,
I. L.
,
2016
, “
Feedstocks and Challenges to Biofuel Development
,”
Handbook of Biofuels Production
,
Elsevier
, Duxford, UK, pp.
85
118
.
26.
Cardona Alzate
,
C. A.
, and
Sánchez Toro
,
O. J.
,
2006
, “
Energy Consumption Analysis of Integrated Flowsheets for Production of Fuel Ethanol From Lignocellulosic Biomass
,”
Energy
,
31
(
13
), pp.
2111
2123
.
27.
Randelli
,
F.
,
2009
, “
An Integrated Analysis of Production Costs and Net Energy Balance of Biofuels
,”
Reg. Environ. Change
,
9
(
3
), pp.
221
229
.
28.
Jahangirian
,
S.
, and
Engeda
,
A.
,
2008
, “
Biogas Combustion and Chemical Kinetics for Gas Turbine Applications
,”
Combustion Science and Engineering
, Vol.
3
, American Society of Mechanical Engineers, New York, pp.
13
22
.
29.
Ullah, I.
,
Ha, M.
,
Othman, D.
,
Hashim, H.
,
Matsuura, T.
,
Ismail, A. F.
,
Rezaei-Dasht Arhandi, M.
, and
Wan Azelle, I.
,,
2017
, “
Biogas as a Renewable Energy Fuel—A Review of Biogas Upgrading, Utilisation and Storage
,”
Energy Convers. Manage.
,
150
, pp.
277
294
.
30.
Arena
,
U.
,
2012
, “
Process and Technological Aspects of Municipal Solid Waste Gasification: A Review
,”
Waste Manage.
,
32
(
4
), pp.
625
639
.
31.
Braun
,
R.
,
Weiland
,
P.
, and
Wellinger
,
A.
,
2008
,
Biogas From Energy Crop Digestion
, IEA Energy,
Braunschweig, Germany
.
32.
Chen
,
S.
,
2012
, “
Green Oil Production by Hydroprocessing
,”
Int. J. Clean Coal Energy
,
1
(
4
), pp.
43
55
.
33.
Klingshirn
,
C. D.
,
DeWitt
,
M.
,
Striebich
,
R.
,
Anneken
,
D.
,
Shafer
,
L.
,
Corporan
,
E.
,
Wagner
,
M.
, and
Brigalli
,
D.
,
2012
, “
Hydroprocessed Renewable Jet Fuel Evaluation, Performance, and Emissions in a T63 Turbine Engine
,”
ASME J. Eng. Gas Turbines Power
,
134
(
5
), p.
051506
.
34.
Li
,
H.
,
Altaher
,
M. A.
,
Wilson
,
C. W.
,
Blakey
,
S.
,
Chung
,
W.
, and
Rye
,
L.
,
2013
, “
Quantification of Aldehydes Emissions From Alternative and Renewable Aviation Fuels Using a Gas Turbine Engine
,”
Atmos. Environ.
,
84
, pp.
373
379
.
35.
Lobo
,
P.
,
Rye
,
L.
,
Williams
,
P. I.
,
Christie
,
S.
,
Uryga-Bugajska
,
I.
,
Wilson
,
C. W.
,
Hagen
,
D. E.
,
Whitefield
,
P. D.
,
Blakey
,
S.
,
Coe
,
H.
,
Raper
,
D.
, and
Pourkashanian
,
M.
,
2012
, “
Impact of Alternative Fuels on Emissions Characteristics of a Gas Turbine Engine—Part 1: Gaseous and Particulate Matter Emissions
,”
Environ. Sci. Technol.
,
46
(
19
), pp.
10805
10811
.
36.
Van de Beld
,
B.
,
Holle
,
E.
, and
Florijn
,
J.
,
2013
, “
The Use of Pyrolysis Oil and Pyrolysis Oil Derived Fuels in Diesel Engines for CHP Applications
,”
Appl. Energy
,
102
, pp.
190
197
.
37.
Czernik
,
S.
, and
Bridgwater
,
A. V.
,
2004
, “
Overview of Applications of Biomass Fast Pyrolysis Oil
,”
Energy Fuels
,
18
(
2
), pp.
590
598
.
38.
Chiaramonti
,
D.
,
Oasmaa
,
A.
, and
Solantausta
,
Y.
,
2007
, “
Power Generation Using Fast Pyrolysis Liquids From Biomass
,”
Renewable Sustainable Energy Rev.
,
11
(
6
), pp.
1056
1086
.
39.
Rogers
,
J. G.
, and
Brammer
,
J. G.
,
2012
, “
Estimation of the Production Cost of Fast Pyrolysis Bio-Oil
,”
Biomass Bioenergy
,
36
, pp.
208
217
.
40.
Seljak
,
T.
,
Rodman Oprešnik
,
S.
,
Kunaver
,
M.
, and
Katrašnik
,
T.
,
2012
, “
Wood, Liquefied in Polyhydroxy Alcohols as a Fuel for Gas Turbines
,”
Appl. Energy
,
99
, pp.
40
49
.
41.
Capstone Turbine Corporation
,
2006
, “
Technical Reference: Capstone C30 Model Performance
,” Capstone Turbine Corporation, Chatsworth, LA, pp.
1
46
.
42.
Ensola GmbH
,
2006
, “Technical Documentation Microturbine Turbec T100,”
Ensola GmbH
, Zurich, Switzerland.
43.
Prussi
,
M.
,
Chiaramonti
,
D.
,
Riccio
,
G.
,
Martelli
,
F.
, and
Pari
,
L.
,
2012
, “
Straight Vegetable Oil Use in Micro-Gas Turbines: System Adaptation and Testing
,”
Appl. Energy
,
89
(
1
), pp.
287
295
.
44.
Prussi
,
M.
,
Chiaramonti
,
D.
,
Recchia
,
L.
,
Martelli
,
F.
,
Guidotti
,
F.
, and
Pari
,
L.
,
2013
, “
Alternative Feedstock for the Biodiesel and Energy Production: The OVEST Project
,”
Energy
,
58
, pp.
2
8
.
45.
Chiariello
,
F.
,
Allouis
,
C.
,
Reale
,
F.
, and
Massoli
,
P.
,
2014
, “
Gaseous and Particulate Emissions of a Micro Gas Turbine Fuelled by Straight Vegetable Oil–Kerosene Blends
,”
Exp. Therm. Fluid Sci.
,
56
, pp.
16
22
.
46.
Bolszo
,
C. D.
, and
McDonell
,
V. G.
,
2009
, “
Emissions Optimization of a Biodiesel Fired Gas Turbine
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2949
2956
.
47.
Calabria
,
R.
,
Chiariello
,
F.
,
Massoli
,
P.
, and
Reale
,
F.
,
2015
, “
Numerical Study of a Micro Gas Turbine Fed by Liquid Fuels: Potentialities and Critical Issues
,”
Energy Procedia
,
81
, pp.
1131
1142
.
48.
Cadorin
,
M.
,
Pinelli
,
M.
,
Vaccari
,
A.
,
Calabria
,
R.
,
Chiariello
,
F.
,
Massoli
,
P.
, and
Bianchi
,
E.
,
2012
, “
Analysis of a Micro Gas Turbine Fed by Natural Gas and Synthesis Gas: MGT Test Bench and Combustor CFD Analysis
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
071401
.
49.
Reale
,
F.
,
Calabria
,
R.
,
Chiariello
,
F.
,
Pagliara
,
R.
, and
Massoli
,
P.
,
2012
, “
A Micro Gas Turbine Fuelled by Methane-Hydrogen Blends
,”
Appl. Mech. Mater.
,
232
, pp.
792
796
.
50.
Abagnale
,
C.
,
Cameretti
,
M. C.
,
De Robbio
,
R.
, and
Tuccillo
,
R.
,
2016
, “
CFD Study of a MGT Combustor Supplied With Syngas
,”
Energy Procedia
,
101
, pp.
933
940
.
51.
Laranci
,
P.
,
Bidini
,
G.
,
Desideri
,
U.
, and
Fantozzi
,
F.
,
2013
, “
CFD Analysis of an Annular Micro Gas Turbine Combustion Chamber Fuelled With Liquid Biofuels: Preliminary Results With Bioethanol
,”
ASME
Paper No. GT2013-95696.
52.
Cappelletti
,
A.
,
Martelli
,
F.
,
Bianchi
,
E.
, and
Trifoni
,
E.
,
2014
, “
Numerical Redesign of 100 kw MGT Combustor for 100% H2 Fueling
,”
Energy Procedia
,
45
, pp.
1412
1421
.
53.
Bolszo
,
C. D.
, and
Mcdonell
,
V. G.
,
2007
, “
Biodiesel Airblast Atomization Optimization for Reducing Pollutant Emission in Small Scale Gas Turbine Engines
,” ILASS-Americas, 20th Annual Conference on Liquid Atomization and Spray Systems, Chicago, IL, May 15–18, Paper No. 21.
54.
Chiaramonti
,
D.
,
Rizzo
,
A. M.
,
Spadi
,
A.
,
Prussi
,
M.
,
Riccio
,
G.
, and
Martelli
,
F.
,
2013
, “
Exhaust Emissions From Liquid Fuel Micro Gas Turbine Fed With Diesel Oil, Biodiesel and Vegetable Oil
,”
Appl. Energy
,
101
, pp.
349
356
.
55.
Cappelletti
,
A.
,
Rizzo
,
A. M.
,
Chiaramonti
,
D.
, and
Martelli
,
F.
,
2013
, “
CFD Redesign of Micro Gas Turbine Combustor for Bio-Fuels Fueling
,”
XXI International Symposium on Air Breathing Engines (ISABE)
, Busan, Korea, Sept. 9–13, pp.
1199
1206
.
56.
Sallevelt
,
J. L. H. P.
,
Gudde
,
J. E. P.
,
Pozarlik
,
A. K.
, and
Brem
,
G.
,
2014
, “
The Impact of Spray Quality on the Combustion of a Viscous Biofuel in a Micro Gas Turbine
,”
Appl. Energy
,
132
, pp.
575
585
.
57.
Pozarlik
,
A.
,
Bijl
,
A.
,
Alst
,
N. V.
,
Bramer
,
E.
, and
Brem
,
G.
,
2015
, “
Pyrolysis Oil Utilization in 50 kWe Gas Turbine
,”
18th IFRF Members' Conference—Flexible and Clean Fuel Conversion to Industry
, Freising, Germany, pp.
1
10
.
58.
Cavarzere
,
A.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Vaccari
,
A.
, and
Venturini
,
M.
,
2014
, “
Experimental Analysis of a Micro Gas Turbine Fuelled With Vegetable Oils From Energy Crops
,”
Energy Procedia
,
45
, pp.
91
100
.
59.
Al-Shudeifat
,
M. A.
, and
Donaldson
,
A. B.
,
2010
, “
Combustion of Waste Trap Grease Oil in Gas Turbine Generator
,”
Fuel
,
89
(
3
), pp.
549
553
.
60.
Zabihian
,
F.
,
Fung
,
A. S.
, and
Chiang
,
H.-W. D.
,
2011
, “
Modeling of Biodiesel Fueled Micro Gas Turbine
,”
ASME
Paper No. GT2011-46655
.
61.
Kasper
,
J. M.
,
Jasas
,
G. B.
, and
Trauth
,
R. L.
,
1983
, “
Use of Pyrolysis-Derived Fuel in a Gas Turbine Engine
,”
ASME
Paper No. 83-GT-96
.
62.
Abu Talib
,
A. R.
,
Gires
,
E.
, and
Ahmad
,
M. T.
,
2014
, “
Performance Test of a Small-Scale Turbojet Engine Running on a Palm Oil Biodiesel—Jet a Blend
,”
J. Fuels
,
2014
, pp.
1
9
.
63.
Hoxie
,
A.
, and
Anderson
,
M.
,
2017
, “
Evaluating High Volume Blends of Vegetable Oil in Micro-Gas Turbine Engines
,”
Renewable Energy
,
101
, pp.
886
893
.
64.
López Juste
,
G.
, and
Salvá Monfort
,
J. J.
,
2000
, “
Preliminary Test on Combustion of Wood Derived Fast Pyrolysis Oils in a Gas Turbine Combustor
,”
Biomass Bioenergy
,
19
(
2
), pp.
119
128
.
65.
Seljak
,
T.
,
Rodman Oprešnik
,
S.
,
Kunaver
,
M.
, and
Katrašnik
,
T.
,
2012
, “
Combustion Performance of Different Liquefied Lignocellulosic Materials in a Laboratory Scale Gas Turbine
,” International Conference on Applied Energy 2012, Suzhou, China, July 5–8, Paper No. ICAE2012-A10550.
66.
Seljak
,
T.
,
Oprešnik
,
S. R.
,
Kunaver
,
M.
, and
Katrašnik
,
T.
,
2014
, “
Effects of Primary Air Temperature on Emissions of a Gas Turbine Fired by Liquefied Spruce Wood
,”
Biomass Bioenergy
,
71
(
2
), pp.
394
407
.
67.
Seljak
,
T.
,
Kunaver
,
M.
, and
Katrašnik
,
T.
,
2014
, “
Emission Evaluation of Different Types of Liquefied Wood
,”
J. Mech. Eng.
,
60
(
4
), pp.
221
231
.
68.
Seljak
,
T.
,
Rodman Oprešnik
,
S.
, and
Katrašnik
,
T.
,
2014
, “
Microturbine Combustion and Emission Characterisation of Waste Polymer-Derived Fuels
,”
Energy
,
77
, pp.
226
234
.
69.
Seljak
,
T.
,
Širok
,
B.
, and
Katrašnik
,
T.
,
2016
, “
Advanced Fuels for Gas Turbines: Fuel System Corrosion, Hot Path Deposit Formation and Emissions
,”
Energy Convers. Manage.
,
125
, pp.
40
50
.
70.
Seljak
,
T.
, and
Katrašnik
,
T.
,
2016
, “
Designing the Microturbine Engine for Waste-Derived Fuels
,”
Waste Manage.
,
47
(
Pt B
), pp.
299
310
.
71.
Durdina
,
L.
,
Jedelsky
,
J.
, and
Jicha
,
M.
,
2012
, “
Spray Structure of a Pressure-Swirl Atomizer for Combustion Applications
,”
EPJ Web Conf.
,
25
, p.
01010
.
72.
Lehto
,
J.
,
Oasmaa
,
A.
,
Solantausta
,
Y.
,
Kytö
,
M.
, and
Chiaramonti
,
D.
,
2014
, “
Review of Fuel Oil Quality and Combustion of Fast Pyrolysis Bio-Oils From Lignocellulosic Biomass
,”
Appl. Energy
,
116
, pp.
178
190
.
73.
Li
,
Z.
,
Wu
,
Y.
,
Yang
,
H.
,
Cai
,
C.
,
Zhang
,
H.
,
Hashiguchi
,
K.
,
Takeno
,
K.
, and
Lu
,
J.
,
2013
, “
Effect of Liquid Viscosity on Atomization in an Internal-Mixing Twin-Fluid Atomizer
,”
Fuel
,
103
, pp.
486
494
.
74.
Beran
,
M.
, and
Axelsson
,
L.-U.
,
2014
, “
Development and Experimental Investigation of a Tubular Combustor for Pyrolysis Oil Burning
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031508
.
You do not currently have access to this content.