The combustion of conventional fuels (diesel and Jet A-1) with 10–20% vol oxygenated biofuels (ethanol, 1-butanol, methyl octanoate, rapeseed oil methyl ester (RME), diethyl carbonate, tri(propylene glycol)methyl ether, i.e., CH3(OC3H6)3OH, and 2,5-dimethylfuran (2,5-DMF)) and a synthetic paraffinic kerosene (SPK) was studied. The experiments were performed using an atmospheric pressure laboratory premixed flame and a four-cylinder four-stroke diesel engine operating at 1500 rpm. Soot samples from kerosene blends were collected above a premixed flame for analysis. Polyaromatic hydrocarbons (PAHs) were extracted from the soot samples. After fractioning, they were analyzed by high-pressure liquid chromatography (HPLC) with UV and fluorescence detectors. C1 to C8 carbonyl compounds (CBCs) were collected at the diesel engine exhaust on 2,4-dinitrophenylhydrazine coated cartridges (DNPH) and analyzed by HPLC with UV detection. The data indicated that blending conventional fuels with biofuels has a significant impact on the emission of both CBCs and PAHs adsorbed on soot. The global concentration of 18 PAHs (1-methyl-naphthalene, 2-methyl-naphthalene, and the 16 U.S. priority EPA PAHs) on soot was considerably lowered using oxygenated fuels, except 2,5-DMF. Conversely, the total carbonyl emission increased by oxygenated biofuels blending. Among them, ethanol and 1-butanol were found to increase considerably the emissions of CBCs.

References

References
1.
Sawyer
,
R. F.
,
2009
, “
Science Based Policy for Addressing Energy and Environmental Problems
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
45
56
.
2.
Escobar
,
J. C.
,
Lora
,
E. S.
,
Venturini
,
O. J.
,
Yáñez
,
E. E.
,
Castillo
,
E. F.
, and
Almazan
,
O.
,
2010
, “
Biofuels: Environment, Technology and Food Security
,”
Renewable Sustainable Energy Rev.
,
13
(
6–7
), pp.
1275
1287
.
3.
European Commission
,
2011
, “
Biofuels Flight Path
,” European Commission, Brussels, Belgium, accessed July 1, 2018, https://ec.europa.eu/energy/sites/ener/files/20110622_biofuels_flight_path_launch.pdf
4.
Mzé Ahmed
,
A.
,
Dagaut
,
P.
,
Hadj-Ali
,
K.
,
Dayma
,
G.
,
Kick
,
T.
,
Herbst
,
J.
,
Kathrotia
,
T.
,
Braun-Unkhoff
,
M.
,
Herzler
,
J.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2012
, “
The Oxidation of a Coal-to-Liquid Synthetic Jet Fuel: Experimental and Chemical Kinetic Modeling Study
,”
Energy Fuels
,
26
(
10
), pp.
6070
6079
.
5.
Dagaut
,
P.
,
Dayma
,
G.
,
Dievart
,
P.
,
Hadj-Ali
,
K.
, and
Mze-Ahmed
,
A.
,
2014
, “
Combustion of a Gas-to-Liquid-Based Alternative Jet Fuel: Experimental and Detailed Kinetic Modeling
,”
Combust. Sci. Technol.
,
186
(
10–11
), pp.
1275
1283
.
6.
Dagaut
,
P.
,
Karsenty
,
F.
,
Dayma
,
G.
,
Diévart
,
P.
,
Hadj-Ali
,
K.
,
Mzé-Ahmed
,
A.
,
Braun-Unkhoff
,
M.
,
Herzler
,
J.
,
Kathrotia
,
T.
,
Kick
,
T.
,
Naumann
,
C.
,
Riedel
,
U.
, and
Thomas
,
L.
,
2014
, “
Experimental and Detailed Kinetic Model for the Oxidation of a Gas to Liquid (GtL) Jet Fuel
,”
Combust. Flame
,
161
(
3
), pp.
835
847
.
7.
Dagaut
,
P.
,
Dayma
,
G.
,
Karsenty
,
F.
, and
Serinyel
,
Z.
, 2015, “
Combustion of Synthetic Jet Fuels (Gas to Liquid and Coal to Liquid) and Multi-Component Surrogates: Experimental and Modeling Study
,”
ASME
Paper No. GT2015-42004.
8.
Mze-Ahmed
,
A.
,
Dagaut
,
P.
,
Dayma
,
G.
, and
Dievart
,
P.
,
2015
, “
Kinetics of Oxidation of a 100% Gas-to-Liquid Synthetic Jet Fuel and a Mixture GtL/1-Hexanol in a Jet-Stirred Reactor: Experimental and Modeling Study
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
011503
.
9.
Dagaut
,
P.
,
Karsenty
,
F.
,
Dayma
,
G.
, and
Serinyel
,
Z.
,
2016
, “
Experimental and Kinetic Modeling of the Oxidation of Synthetic Jet Fuels and Surrogates
,”
Combust. Sci. Technol.
,
188
(
11–12
), pp.
1705
1718
.
10.
Dagaut
,
P.
, and
Dievart
,
P.
,
2017
, “
Combustion of Synthetic Jet Fuels: Naphthenic Cut and Blend With a Gas-to-Liquid (GtL) Jet Fuel
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
433
440
.
11.
Hermann
,
F.
,
Klingmann
,
J.
,
Gabrielsson
,
R.
,
Pedersen
,
J. R.
,
Olsson
,
J. O.
, and
Owrang
,
F.
,
2006
, “
Chemical Analysis of Combustion Products From a High-Pressure Gas Turbine Combustor Rig Fueled by Jet A1 Fuel and a Fischer-Tropsch-Based Fuel
,”
ASME
Paper No. GT2006-90600.
12.
Corporan
,
E.
,
DeWitt
,
M. J.
,
Belovich
,
V.
,
Pawlik
,
R.
,
Lynch
,
A. C.
,
Gord
,
J. R.
, and
Meyer
,
T. R.
,
2007
, “
Emissions Characteristics of a Turbine Engine and Research Combustor Burning a Fischer-Tropsch Jet Fuel
,”
Energy Fuels
,
21
(
5
), pp.
2615
2626
.
13.
Huber
,
M. L.
,
Smith
,
B. L.
,
Ott
,
L. S.
, and
Bruno
,
T. J.
,
2008
, “
Surrogate Mixture Model for the Thermophysical Properties of Synthetic Aviation Fuel S-8: Explicit Application of the Advanced Distillation Curve
,”
Energy Fuels
,
22
(
2
), pp.
1104
1114
.
14.
Buchholz
,
B. A.
,
Mueller
,
C. J.
,
Upatnieks
,
A.
,
Martin
,
G. C.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
Using Carbon-14 Isotope Tracing to Investigate Molecular Structure Effects of the Oxygenate Dibutyl Maleate on Soot Emissions From a DI Diesel Engine
,”
SAE Trans.
,
113
, pp.
846
857
.
15.
Ratcliff
,
M. A.
,
Burton
,
J.
,
Sindler
,
P.
,
Christensen
,
E.
,
Fouts
,
L.
,
Chupka
,
G. M.
, and
McCormick
,
R. L.
,
2016
, “
Knock Resistance and Fine Particle Emissions for Several Biomass-Derived Oxygenates in a Direct-Injection Spark-Ignition Engine
,”
SAE Int. J. Fuels Lubr.
,
9
(
1
), pp.
59
70
.
16.
Ratcliff
,
M. A.
,
Luecke
,
J.
,
Williams
,
A.
,
Christensen
,
E.
,
Yanowitz
,
J.
,
Reek
,
A.
, and
McCormick
,
R. L.
,
2013
, “
Impact of Higher Alcohols Blended in Gasoline on Light-Duty Vehicle Exhaust Emissions
,”
Environ. Sci. Technol.
,
47
(
23
), pp.
13865
13872
.
17.
Seinfeld
,
J. H.
, and
Pandis
,
S. N.
,
2006
,
Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
,
Wiley-Interscience
,
Hoboken, NJ
.
18.
US-EPA
,
1999
, “
Compendium Method to-11A: Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC) [Active Sampling Methodology]
,” United States Environmental Protection Agency, Cincinnati, OH, Report No. EPA/625/R-96/010b.
19.
Lelièvre
,
S.
,
Bedjanian
,
Y.
,
Pouvesle
,
N.
,
Delfau
,
J.-L.
, and
Vovelle
,
C. G. L. B.
,
2004
, “
Heterogeneous Reaction of Ozone With Hydrocarbon Flame Soot
,”
Phys. Chem. Chem. Phys.
,
6
(
6
), pp.
1181
1191
.
20.
Andrade-Eiroa
,
A.
,
Shahla
,
R.
,
Romanias
,
M. N.
, and
Dagaut
,
P.
,
2014
, “
An Alternative to Trial and Error Methodology in Solid Phase Extraction: An Original Automated Solid Phase Extraction Procedure for Analysing PAHs and PAH-Derivatives in Soot
,”
RSC Adv.
,
4
(
63
), pp.
33636
33644
.
21.
Guarieiro
,
L. L. N.
,
de Souza
,
A. F.
,
Torres
,
E. A.
, and
de Andrade
,
J. B.
,
2009
, “
Emission Profile of 18 Carbonyl Compounds, CO, CO2, and NOx Emitted by a Diesel Engine Fuelled With Diesel and Ternary Blends Containing Diesel, Ethanol and Biodiesel or Vegetable Oils
,”
Atmos. Environ.
,
43
(
17
), pp.
2754
2761
.
22.
Song
,
C.
,
Zhao
,
Z.
,
Lv
,
G.
,
Song
,
J.
,
Liu
,
L.
, and
Zhao
,
R.
,
2010
, “
Carbonyl Compound Emissions From a Heavy-Duty Diesel Engine Fueled With Diesel Fuel and Ethanol–Diesel Blend
,”
Chemosphere
,
79
(
11
), pp.
1033
1039
.
23.
Cheung
,
C.
,
Di
,
Y.
, and
Huang
,
Z.
,
2008
, “
Experimental Investigation of Regulated and Unregulated Emissions From a Diesel Engine Fueled With Ultralow-Sulfur Diesel Fuel Blended With Ethanol and Dodecanol
,”
Atmos. Environ., Part A
,
42
(
39
), pp.
1352
2310
.
24.
Agarwal
,
A. K.
,
2007
, “
Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
33
(
3
), pp.
233
271
.
25.
Tao
,
T.
,
Sun
,
W.
,
Yang
,
B.
,
Hansen
,
N.
,
Moshammer
,
K.
, and
Law
,
C. K.
,
2017
, “
Investigation of the Chemical Structures of Laminar Premixed Flames Fueled by Acetaldehyde
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1287
1294
.
26.
Shahla
,
R.
,
Togbe
,
C.
,
Thion
,
S.
,
Timothee
,
R.
,
Lailliau
,
M.
,
Halter
,
F.
,
Chauveau
,
C.
,
Dayma
,
G.
, and
Dagaut
,
P.
,
2017
, “
Burning Velocities and Jet-Stirred Reactor Oxidation of Diethyl Carbonate
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
553
560
.
27.
McEnally
,
C. S.
, and
Pfefferle
,
L. D.
,
2005
, “
Fuel Decomposition and Hydrocarbon Growth Processes for Oxygenated Hydrocarbons: Butyl Alcohols
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1363
1370
.
28.
McEnally
,
C. S.
, and
Pfefferle
,
L. D.
,
2011
, “
Sooting Tendencies of Oxygenated Hydrocarbons in Laboratory-Scale Flames
,”
Environ. Sci. Technol.
,
45
(
6
), pp.
2498
2503
.
29.
Pepiot-Desjardins
,
P.
,
Pitsch
,
H.
,
Malhotra
,
R.
,
Kirby
,
S. R.
, and
Boehman
,
A. L.
,
2008
, “
Structural Group Analysis for Soot Reduction Tendency of Oxygenated Fuels
,”
Combust. Flame
,
154
(
1–2
), pp.
191
205
.
30.
Nisbet
,
I. C. T.
, and
Lagoy
,
P. K.
,
1992
, “
Toxic Equivalency Factors (TEFS) for Polycyclic Aromatic-Hydrocarbons (PAHs)
,”
Regul. Toxicol. Pharmacol.
,
16
(
3
), pp.
290
300
.
You do not currently have access to this content.