This work presents an assessment of classical and state of the art reduced order modeling (ROM) techniques to enhance the computational efficiency for dynamic analysis of jointed structures with local contact nonlinearities. These ROM methods include classical free interface method (Rubin method, MacNeal method), fixed interface method Craig-Bampton (CB), Dual Craig-Bampton (DCB) method and also recently developed joint interface mode (JIM) and trial vector derivative (TVD) approaches. A finite element (FE) jointed beam model is considered as the test case taking into account two different setups: one with a linearized spring joint and the other with a nonlinear macroslip contact friction joint. Using these ROM techniques, the accuracy of dynamic behaviors and their computational expense are compared separately. We also studied the effect of excitation levels, joint region size, and number of modes on the performance of these ROM methods.

References

References
1.
Brake
,
M. R. W.
,
Groß
,
J.
,
Lacayo
,
R. M.
,
Salles
,
L.
,
Schwingshackl
,
C. W.
,
Reuß
,
P.
, and
Armand
,
J.
,
2018
, “
Reduced Order Modeling of Nonlinear Structures With Frictional Interfaces
,”
The Mechanics of Jointed Structures: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics
,
M.R.W.
,
Brake
, ed.,
Springer International Publishing
, Cham, pp.
427
450
.
2.
Ibrahim
,
R. A.
, and
Pettit
,
C. L.
,
2005
, “
Uncertainties and Dynamic Problems of Bolted Joints and Other Fasteners
,”
J. Sound Vib.
,
279
(
3–5
), pp.
857
936
.
3.
Goyder
,
H.
,
Lancereau
,
D.
,
Ind
,
P.
, and
Brown
,
D.
,
2016
,
Friction and Damping Associated With Bolted Joints: Results and Signal Processing
,
ISMA, Leuven
,
Belgium
.
4.
Krack
,
M.
, and
Panning-von Scheidt
,
L.
,
2018
,
Nonlinear Modal Analysis and Modal Reduction of Jointed Structures, the Mechanics of Jointed Structures
,
Springer
, Cham, pp.
525
538
.
5.
Beards
,
C. F.
,
1979
, “
Damping in Structural Joints, Shock and Vibration Information Center
,”
The Shock and Vibration Digest
,
11
(9), pp. 35–41.
6.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2006
, “
Effects of Damping and Varying Contact Area at Blade-Disk Joints in Forced Response Analysis of Bladed Disk Assemblies
,”
ASME J. Turbomach.
,
128
(
2
), pp.
403
410
.
7.
Petrov
,
E. P.
,
2011
, “
A High-Accuracy Model Reduction for Analysis of Nonlinear Vibrations in Structures With Contact Interfaces
,”
ASME J. Eng. Gas Turbines Power
,
133
(
10
), p.
102503
.
8.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.
9.
Yuan
,
J.
,
Scarpa
,
F.
,
Allegri
,
G.
,
Titurus
,
B.
,
Patsias
,
S.
, and
Rajasekaran
,
R.
,
2017
, “
Efficient Computational Techniques for Mistuning Analysis of Bladed Discs: A Review
,”
Mechanical Systems and Signal Processing
, 87(Part A), pp. 71–90.
10.
Huang
,
S.
,
2008
, “
Dynamic Analysis of Assembled Structures With Nonlinearity, Department of Mechanical Engineering
,”
Ph. D. thesis
,
Imperial College London
, UK.
11.
Zucca
,
S.
, and
Epureanu
,
B. I.
,
2014
, “
Bi-Linear Reduced-Order Models of Structures With Friction Intermittent Contacts
,”
Nonlinear Dyn.
,
77
(
3
), pp.
1055
1067
.
12.
Pichler
,
F.
,
Witteveen
,
W.
, and
Fischer
,
P.
,
2017
, “
Reduced-Order Modeling of Preloaded Bolted Structures in Multibody Systems by the Use of Trial Vector Derivatives
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051032
.
13.
Armand
,
J.
,
Pesaresi
,
L.
,
Salles
,
L.
, and
Schwingshackl
,
C. W.
,
2017
, “
A Multiscale Approach for Nonlinear Dynamic Response Predictions With Fretting Wear
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022505
.
14.
Gasch
,
R.
, and
Knothe
,
K. X.
,
1989
,
Strukturdynamik: Bd. 2. Kontinua Und Ihre Diskretisierung
, Springer-Verlag, Heidelberg, Germany.
15.
Becker
,
J.
, and
Gaul
,
L.
,
2008
, “
CMS Methods for Efficient Damping Prediction for Structures With Friction
,”
IMAC-XXVI
, Orlando, FL, Feb. 4–7.https://pdfs.semanticscholar.org/5b00/3a35f60c707da88a80423db8daaf4aebfbd8.pdf
16.
Witteveen
,
W.
, and
Irschik
,
H.
,
2009
, “
Efficient Mode-Based Computational Approach for Jointed Structures: Joint Interface Modes
,”
AIAA J.
,
47
(
1
), p.
252
.
17.
Witteveen
,
W.
, and
Pichler
,
F.
,
2014
, “
Efficient Model Order Reduction for the Dynamics of Nonlinear Multilayer Sheet Structures With Trial Vector Derivatives
,”
Shock Vib.
,
2014
, p. 913136.
18.
Segalman
,
D. J.
,
2007
, “
Model Reduction of Systems With Localized Nonlinearities
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
3
), pp.
249
266
.
19.
Jain
,
S.
,
2015
, “
Model Order Reduction for Non-Linear Structural Dynamics
,”
Master's thesis
, Delft University of Technology, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid%3Acb1d7058-2cfa-439a-bb2f-22a6b0e5bb2a
20.
Pesaresi
,
L.
,
Salles
,
L.
,
Jones
,
A.
,
Green
,
J. S.
, and
Schwingshackl
,
C. W.
,
2017
, “
Modelling the Nonlinear Behaviour of an Underplatform Damper Test Rig for Turbine Applications
,”
Mech. Syst. Signal Process.
,
85
, pp.
662
679
.
21.
Gruber
,
F. M.
, and
Rixen
,
D. J.
,
2016
, “
Evaluation of Substructure Reduction Techniques With Fixed and Free Interfaces
,”
Strojniški Vestnik-J. Mech. Eng.
,
62
(
7–8
), pp.
452
462
.
22.
Bograd
,
S.
,
Reuss
,
P.
,
Schmidt
,
A.
,
Gaul
,
L.
, and
Mayer
,
M.
,
2011
, “
Modeling the Dynamics of Mechanical Joints
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
2801
2826
.
23.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2002
, “
Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Discs
,”
ASME
Paper No. GT2002-30325.
24.
Salles
,
L.
,
Blanc
,
L.
,
Thouverez
,
F.
,
Gouskov
,
A. M.
, and
Jean
,
P.
,
2009
, “
Dynamic Analysis of a Bladed Disk With Friction and Fretting-Wear in Blade Attachments
,”
ASME
Paper No. GT2009-60151
.
25.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.
26.
Seydel
,
R.
,
2009
,
Practical Bifurcation and Stability Analysis
,
Springer Science & Business Media
, Berlin, Germany.
27.
Nacivet
,
S.
,
Pierre
,
C.
,
Thouverez
,
F.
, and
Jezequel
,
L.
,
2003
, “
A Dynamic Lagrangian Frequency–Time Method for the Vibration of Dry-Friction-Damped Systems
,”
J. Sound Vib.
,
265
(
1
), pp.
201
219
.
28.
Sarrouy
,
E.
, and
Sinou
,
J.-J.
,
2011
, “
Non-Linear Periodic and Quasi-Periodic Vibrations in Mechanical Systems-on the Use of the Harmonic Balance Methods
,” Advances in Vibration Analysis Research, InTech, London.
29.
Pastor
,
M.
,
Binda
,
M.
, and
Harčarik
,
T.
,
2012
, “
Modal Assurance Criterion
,”
Procedia Eng.
,
48
, pp.
543
548
.
You do not currently have access to this content.