Sensitivity to stretch and differential diffusion of chemical species are known to influence premixed flame propagation, even in the turbulent environment where mass diffusion can be greatly enhanced. In this context, it is convenient to characterize flames by their Lewis number (Le), a ratio of thermal-to-mass diffusion. The work reported in this paper describes a study of flame stabilization characteristics when Le is varied. The test data are comprised of Le1 (hydrogen), Le1 (methane), and Le>1 (propane) flames stabilized at various turbulence levels. The experiments were carried out in a hot exhaust opposed-flow turbulent flame rig (HOTFR), which consists of two axially opposed, symmetric jets. The stagnation plane between the two jets allows the aerodynamic stabilization of a flame and clearly identifies fuel influences on turbulent flames. Furthermore, high-speed particle image velocimetry (PIV), using oil droplet seeding, allowed simultaneous recordings of velocity (mean and rms) and flame surface position. These experiments, along with data processing tools developed through this study, illustrated that in the mixtures with Le1, turbulent flame speed increases considerably compared to the laminar flame speed due to differential diffusion effects, where higher burning rates compensate for the steepening average velocity gradient and keeps these flames almost stationary as bulk flow velocity increases. These experiments are suitable for validating the ability of turbulent combustion models to predict lifted, aerodynamically stabilized flames. In the final part of this paper, we model the three fuels at two turbulence intensities using the flamelet generated manifolds (FGM) model in a Reynolds-averaged Navier–Stokes (RANS) context. Computations reveal that the qualitative flame stabilization trends reproduce the effects of turbulence intensity; however, more accurate predictions are required to capture the influences of fuel variations and differential diffusion.

References

References
1.
Hu
,
E.
,
Huang
,
Z.
,
He
,
J.
,
Jin
,
C.
, and
Zheng
,
J.
,
2009
, “
Experimental and Numerical Study on Laminar Burning Characteristics of Premixed Methane–Hydrogen–Air Flames
,”
Int. J. Hydrogen Energy
,
34
(
11
), pp.
4876
4888
.
2.
Tang
,
C.
,
Huang
,
Z.
,
Jin
,
C.
,
He
,
J.
,
Wang
,
J.
,
Wang
,
X.
, and
Miao
,
H.
,
2008
, “
Laminar Burning Velocities and Combustion Characteristics of Propane–Hydrogen–Air Premixed Flames
,”
Int. J. Hydrogen Energy
,
33
(
23
), pp.
4906
4914
.
3.
Boschek
,
E.
,
Griebel
,
P.
, and
Jansohn
,
P.
,
2007
, “
Fuel Variability Effects on Turbulent, Lean Premixed Flames at High Pressures
,”
ASME
Paper No. GT2007-27496.
4.
Matalon
,
M.
,
1983
, “
On Flame Stretch
,”
Combust. Sci. Technol.
,
31
(
3–4
), pp.
169
181
.
5.
Law
,
C.
,
1989
, “
Dynamics of Stretched Flames
,”
Proc. Combust. Inst.
,
22
(
1
), pp.
1381
1402
.
6.
Williams
,
F. A.
,
2000
, “
Progress in Knowledge of Flamelet Structure and Extinction
,”
Prog. Energy Combust. Sci.
,
26
(
4–6
), pp.
657
682
.
7.
Law
,
C. K.
,
2010
,
Combustion Physics
,
Cambridge University Press
, Cambridge,
UK
.
8.
Marshall
,
A.
,
Lundrigan
,
J.
,
Venkateswaran
,
P.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2015
, “
Fuel Effects on Leading Point Curvature Statistics of High Hydrogen Content Fuels
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1417
1424
.
9.
Venkateswaran
,
P.
,
Marshall
,
A.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2013
, “
Pressure and Fuel Effects on Turbulent Consumption Speeds of H2/CO Blends
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1527
1535
.
10.
Libby
,
P. A.
, and
Williams
,
F. A.
,
1982
, “
Structure of Laminar Flamelets in Premixed Turbulent Flames
,”
Combust. Flame
,
44
(
1–3
), pp.
287
303
.
11.
Chen
,
Y.-C.
, and
Bilger
,
R. W.
,
2004
, “
Experimental Investigation of Three-Dimensional Flame-Front Structure in Premixed Turbulent Combustion—Part II: Lean Hydrogen/Air Bunsen Flames
,”
Combust. Flame
,
138
(
1–2
), pp.
155
174
.
12.
Abdel-Gayed
,
R.
,
Bradley
,
D.
,
Hamid
,
M.
, and
Lawes
,
M.
,
1984
, “
Lewis Number Effects on Turbulent Burning Velocity
,”
Proc. Combust. Inst.
,
20
(
1
), pp.
505
512
.
13.
Lipatnikov
,
A.
, and
Chomiak
,
J.
,
2005
, “
Molecular Transport Effects on Turbulent Flame Propagation and Structure
,”
Prog. Energy Combust. Sci.
,
31
(
1
), pp.
1
73
.
14.
Venkateswaran
,
P.
,
Marshall
,
A.
,
Shin
,
D. H.
,
Noble
,
D.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2011
, “
Measurements and Analysis of Turbulent Consumption Speeds of H2/CO Mixtures
,”
Combust. Flame
,
158
(
8
), pp.
1602
1614
.
15.
Barlow
,
R. S.
,
Dunn
,
M. J.
,
Sweeney
,
M. S.
, and
Hochgreb
,
S.
,
2012
, “
Effects of Preferential Transport in Turbulent Bluff-Body-Stabilized Lean Premixed CH4/Air Flames
,”
Combust. Flame
,
159
(
8
), pp.
2563
2575
.
16.
Salusbury
,
S. D.
,
Abbasi-Atibeh
,
E.
, and
Bergthorson
,
J. M.
,
2017
, “
The Effect of Lewis Number on Instantaneous Flamelet Speed and Position Statistics in Counter-Flow Flames With Increasing Turbulence
,”
ASME
Paper No. GT2017-64821.
17.
Yuen
,
F.
, and
Gülder
,
O.
,
2009
, “
Premixed Turbulent Flame Front Structure Investigation by Rayleigh Scattering in the Thin Reaction Zone Regime
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1747
1754
.
18.
Furukawa
,
J.
,
Hirano
,
T.
, and
Williams
,
F. A.
,
1998
, “
Burning Velocities of Flamelets in a Turbulent Premixed Flame
,”
Combust. Flame
,
113
(
4
), pp.
487
491
.
19.
Ikeda
,
Y.
,
Kojima
,
J.
,
Nakajima
,
T.
,
Akamatsu
,
F.
, and
Katsuki
,
M.
,
2000
, “
Measurement of the Local Flamefront Structure of Turbulent Premixed Flames by Local Chemiluminescence
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
343
350
.
20.
Driscoll
,
J. F.
,
2008
, “
Turbulent Premixed Combustion: Flamelet Structure and Its Effect on Turbulent Burning Velocities
,”
Prog. Energy Combust. Sci.
,
34
(
1
), pp.
91
134
.
21.
Coppola
,
G.
,
Coriton
,
B.
, and
Gomez
,
A.
,
2009
, “
Highly Turbulent Counterflow Flames: A Laboratory Scale Benchmark for Practical Systems
,”
Combust. Flame
,
156
(
9
), pp.
1834
1843
.
22.
Mastorakos
,
E.
,
Taylor
,
A.
, and
Whitelaw
,
J.
,
1995
, “
Extinction of Turbulent Counterflow Flames With Reactants Diluted by Hot Products
,”
Combust. Flame
,
102
(
1–2
), pp.
101
114
.
23.
Hampp
,
F.
, and
Lindstedt
,
R.
,
2017
, “
Quantification of Combustion Regime Transitions in Premixed Turbulent DME Flames
,”
Combust. Flame
,
182
, pp.
248
268
.
24.
Borghi
,
R.
,
1985
, “
On the Structure and Morphology of Turbulent Premixed Flames
,”
Recent Advances in the Aerospace Sciences
,
Springer
, Boston, MA, pp.
117
138
.
25.
Kolla
,
H.
, and
Swaminathan
,
N.
,
2010
, “
Strained Flamelets for Turbulent Premixed Flames—Part I: Formulation and Planar Flame Results
,”
Combust. Flame
,
157
(
5
), pp.
943
954
.
26.
Donini
,
A.
,
Bastiaans
,
R.
,
van Oijen
,
J.
, and
de Goey
,
L.
,
2015
, “
Differential Diffusion Effects Inclusion With Flamelet Generated Manifold for the Modeling of Stratified Premixed Cooled Flames
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
831
837
.
27.
van Oijen
,
J.
,
Donini
,
A.
,
Bastiaans
,
R.
,
ten Thije Boonkkamp
,
J.
, and
de Goey
,
L.
,
2016
, “
State-of-the-Art in Premixed Combustion Modeling Using Flamelet Generated Manifolds
,”
Prog. Energy Combust. Sci.
,
57
, pp.
30
74
.
28.
Coppola
,
G.
, and
Gomez
,
A.
,
2009
, “
Experimental Investigation on a Turbulence Generation System With High-Blockage Plates
,”
Exp. Therm. Fluid Sci.
,
33
(
7
), pp.
1037
1048
.
29.
Goodwin, D. G.
,
Moffat, H. K.
, and
Speth, R. L.
, 2016, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 2.2.1
,” Cantera Developers, accessed Aug. 17, 2018, http://www.cantera.org
30.
Salusbury
,
S. D.
, and
Bergthorson
,
J. M.
,
2015
, “
Maximum Stretched Flame Speeds of Laminar Premixed Counter-Flow Flames at Variable Lewis Number
,”
Combust. Flame
,
162
(
9
), pp.
3324
3332
.
31.
Glawe
,
G. E.
,
Holanda
,
R.
, and
Krause
,
L. N.
,
1978
, “
Recovery and Radiation Corrections and Time Constants of Several Sizes of Shielded and Unshielded Thermocouple Probes for Measuring Gas Temperature
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No. NASA-TP-1099, E-9289.
32.
Bradley
,
D.
, and
Matthews
,
K.
,
1968
, “
Measurement of High Gas Temperatures With Fine Wire Thermocouples
,”
J. Mech. Eng. Sci.
,
10
(
4
), pp.
299
305
.
33.
Tennekes
,
H.
, and
Lumley
,
J.
,
1972
,
A First Course in Turbulence
,
MIT Press
,
Cambridge, MA
.
34.
Hinze
,
J.
,
1975
,
Turbulence
,
McGraw-Hill
,
New York
.
35.
Balusamy
,
S.
,
Cessou
,
A.
, and
Lecordier
,
B.
,
2011
, “
Direct Measurement of Local Instantaneous Laminar Burning Velocity by a New PIV Algorithm
,”
Exp. Fluids
,
50
(
4
), pp.
1109
1121
.
36.
Kheirkhah
,
S.
, and
Gülder
,
Ö. L.
,
2015
, “
Consumption Speed and Burning Velocity in Counter-Gradient and Gradient Diffusion Regimes of Turbulent Premixed Combustion
,”
Combust. Flame
,
162
(
4
), pp.
1422
1439
.
37.
Abu-Gharbieh
,
R.
,
Hamarneh
,
G.
,
Gustavsson
,
T.
, and
Kaminski
,
C.
,
2003
, “
Level Set Curve Matching and Particle Image Velocimetry for Resolving Chemistry and Turbulence Interactions in Propagating Flames
,”
J. Math. Imaging Vision
,
19
(
3
), pp.
199
218
.
38.
Kolla
,
H.
,
Rogerson
,
J.
, and
Swaminathan
,
N.
,
2010
, “
Validation of a Turbulent Flame Speed Model Across Combustion Regimes
,”
Combust. Sci. Technol.
,
182
(
3
), pp.
284
308
.
39.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
, Cambridge,
UK
.
40.
Jella
,
S.
,
Bergthorson
,
J.
,
Kwong
,
W. Y.
, and
Steinberg
,
A.
,
2018
, “
RANS and LES Modeling of a Linear-Array Swirl Burner Using a Flamelet-Progress Variable Approach
,”
ASME
Paper No. GT2018-75896.
41.
Nguyen
,
P.-D.
,
Vervisch
,
L.
,
Subramanian
,
V.
, and
Domingo
,
P.
,
2010
, “
Multidimensional Flamelet-Generated Manifolds for Partially Premixed Combustion
,”
Combust. Flame
,
157
(
1
), pp.
43
61
.
42.
Goldin
,
G.
,
Ren
,
Z.
,
Forkel
,
H.
,
Lu
,
L.
,
Tangirala
,
V.
, and
Karim
,
H.
,
2012
, “
Modeling CO with Flamelet-Generated Manifolds—Part 1: Flamelet Configuration
,”
ASME
Paper No. GT2012-69528.
43.
Guo
,
H.
,
Tayebi
,
B.
,
Galizzi
,
C.
, and
Escudié
,
D.
,
2010
, “
Burning Rates and Surface Characteristics of Hydrogen-Enriched Turbulent Lean Premixed Methane–Air Flames
,”
Int. J. Hydrogen Energy
,
35
(
20
), pp.
11342
11348
.
44.
Bergthorson
,
J.
, and
Dimotakis
,
P.
,
2006
, “
Particle Velocimetry in High-Gradient/High-Curvature Flows
,”
Exp. Fluids
,
41
(
2
), pp.
255
263
.
45.
Egolfopoulos
,
F. N.
, and
Campbell
,
C. S.
,
1999
, “
Dynamics and Structure of Dusty Reacting Flows: Inert Particles in Strained, Laminar, Premixed Flames
,”
Combust. Flame
,
117
(
1–2
), pp.
206
226
.
46.
Allen
,
M. D.
, and
Raabe
,
O. G.
,
1985
, “
Slip Correction Measurements of Spherical Solid Aerosol Particles in an Improved Millikan Apparatus
,”
Aerosol Sci. Technol.
,
4
(
3
), pp.
269
286
.
47.
Talbot
,
L.
,
1981
, “
Thermophoresis—A Review
,”
Rarefied Gas Dynamics, Parts I and II
(Progress in Astronautics and Aeronautics, Vol. 74), American Institute of Aeronautics and Astronautics, Reston, VA, pp.
467
488
.
48.
Vincenti
,
W.
, and
Kruger
,
C.
,
1965
, “
Introduction to Physical Gas Dynamics
,”
Wiley
,
New York
.
49.
Turns
,
S. R.
,
1996
,
An Introduction to Combustion
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.