The wind industry needs reliable and accurate airfoil polars to properly predict wind turbine performance, especially during the initial design phase. Medium- and low-fidelity simulations directly depend on the accuracy of the airfoil data and even more so if, e.g., dynamic effects are modeled. This becomes crucial if the blades of a turbine operate under stalled conditions for a significant part of the turbine's lifetime. In addition, the design process of vertical axis wind turbines needs data across the full range of angles of attack between 0 and 180 deg. Lift, drag, and surface pressure distributions of a NACA 0021 airfoil equipped with surface pressure taps were investigated based on time-resolved pressure measurements. The present study discusses full range static polars and several dynamic sinusoidal pitching configurations covering two Reynolds numbers Re = 140k and 180k, and different incidence ranges: near stall, poststall, and deep stall. Various bistable flow phenomena are discussed based on high frequency measurements revealing large lift-fluctuations in the post and deep stall regime that exceed the maximum lift of the static polars and are not captured by averaged measurements. Detailed surface pressure distributions are discussed to provide further insight into the flow conditions and pressure development during dynamic motion. The experimental data provided within the present paper are dedicated to the scientific community for calibration and reference purposes, which in the future may lead to higher accuracy in performance predictions during the design process of wind turbines.

References

References
1.
Simic
,
Z.
,
Havelka
,
J. G.
, and
Vrhovcak
,
M. B.
,
2013
, “
Small Wind Turbines—A Unique Segment of the Wind Power Market
,”
Renewable Energy
,
50
(
50
), pp.
1027
1036
.
2.
Marten
,
D.
,
Wendler
,
J.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
QBlade: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines
,”
Int. J. Emerging Technol. Adv. Eng.
,
3
(
3
), pp.
264
269
.https://ijetae.com/files/Conference%20ICERTSD-2013/IJETAE_ICERTSD_0213_41.pdf
3.
Marten
,
D.
,
2014
, “
QBlade
,” Chair of Fluid Dynamics, Technical University of Berlin, Berlin, Germany, accessed Feb. 19, 2018, http://fd.tu-berlin.de/en/research/projects/wind-energy/qblade/
4.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rainbird
,
J. M.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines—Part I: Flow Curvature Effects
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032602
.
5.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rainbird
,
J. M.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines—Part II: Post-Stall Data Extrapolation Methods
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032603
.
6.
Marten
,
D.
,
Bianchini
,
A.
,
Pechlivanoglou
,
G.
,
Balduzzi
,
F.
,
Nayeri
,
C. N.
,
Ferrara
,
G.
,
Paschereit
,
C. O.
, and
Ferrari
,
L.
,
2016
, “
Effects of Airfoil's Polar Data in the Stall Region on the Estimation of Darrieus Wind Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022606
.
7.
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Marten
,
D.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2015
, “
A Review of Wind Turbine Polar Data and Its Effect on Fatigue Loads Simulation Accuracy
,”
ASME
Paper No. GT2015-43249.
8.
Holst
,
D.
,
Church
,
B.
,
Pechlivanoglou
,
G.
,
Tüzüner
,
E.
,
Saverin
,
J.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2018
, “Experimental Analysis of a NACA 0021 Airfoil Section Through 180-Degree Angle of Attack at Low Reynolds Numbers for Use in Wind Turbine Analysis,”
ASME J. Eng. Gas Turbines Power
(accepted).
9.
Fujisawa
,
N.
, and
Shibuya
,
S.
,
2001
, “
Observations of Dynamic Stall on Darrieus Wind Turbine Blades
,”
J. Wind Eng. Ind. Aerodyn.
,
89
(
2
), pp.
201
214
.
10.
Laneville
,
A.
, and
Vittecoq
,
P.
,
1986
, “
Dynamic Stall: The Case of the Vertical Axis Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
108
(
2
), pp.
140
145
.
11.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Analysis of Dynamic Stall Models in Low-Order Simulation Models for Vertical-Axis Wind Turbines
,”
Energy Procedia
,
101
(
Suppl. C
), pp.
488
495
.
12.
Rainbird
,
J. M.
,
Peirá
,
J.
, and
Graham
,
J. M. R.
,
2015
, “
Blockage-Tolerant Wind Tunnel Measurements for a NACA 0012 at High Angles of Attack
,”
J. Wind Eng. Ind. Aerodyn.
,
145
, pp.
209
218
.
13.
Sheldahl
,
R. E.
, and
Klimas
,
P. C.
,
1981
, “
Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND-80-2114
. https://prod.sandia.gov/techlib-noauth/access-control.cgi/1980/802114.pdf
14.
Rainbird
,
J. M.
,
Peiro
,
J.
, and
Graham
,
J. M. R.
,
2015
, “
Post-Stall Airfoil Performance and Vertical-Axis Wind Turbines
,”
AIAA
Paper No. AIAA 2015-0720.
15.
Rainbird
,
J.
,
2007
, “
The Aerodynamic Development of a Vertical Axis Wind Turbine
,” Master's thesis, University of Durham, Durham, UK.
16.
Rainbird
,
J. M.
,
Bianchini
,
A.
,
Balduzzi
,
F.
,
Peir
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
On the Influence of Virtual Camber Effect on Airfoil Polars for Use in Simulations of Darrieus Wind Turbines
,”
Energy Convers. Manage.
,
106
(
Suppl. C
), pp.
373
384
.
17.
Du
,
L.
,
Berson
,
A.
, and
Dominy
,
R. G.
,
2014
, “
Aerofoil Behaviour at High Angles of Attack and at Reynolds Numbers Appropriate for Small Wind Turbines
,”
Proc. Inst. Mech. Eng., Part C
,
229
(
11
), pp.
2007
2022
.
18.
Du
,
L.
,
Berson
,
A.
, and
Dominy
,
R. G.
,
2014
, “
NACA0018 Behaviour at High Angles of Attack and at Reynolds Numbers Appropriate for Small Wind Turbines
,” School of Engineering and Computing Sciences, Durham University, Durham, UK, Report No. ECS-TR 2014/08.
19.
Holst
,
D.
,
Balduzzi
,
F.
,
Bianchini
,
A.
,
Church
,
B.
,
Wegner
,
F.
,
Pechlivanoglou
,
G.
,
Ferrari
,
L.
,
Ferrara
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2018
, “
Static and Dynamic Analysis of a NACA 0021 Airfoil Section at Low Reynolds Numbers Based on Experiments and CFD
,”
ASME J. Eng. Gas Turbines Power
(accepted).
20.
Holst
,
D.
,
Thommes
,
K.
,
Schönlau
,
M.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2016
, “
Entwicklung eines aerodynamischen Prüfstands zur Flügelprofiluntersuchung von Kleinwindkraftanlagen unter dynamischen Winkeländerungen auf Basis eines cRIO-9068
,”
Virtuelle Instrumente in der Praxis
(Mess-, Prüf- und Regelungstechnik),
VDE VERLAG
, Berlin, Germany, pp.
54
57
.
21.
Rostamzadeh
,
N.
,
Kelso
,
R. M.
,
Dally
,
B. B.
, and
Hansen
,
K. L.
,
2013
, “
The Effect of Undulating Leading-Edge Modifications on NACA 0021 Airfoil Characteristics
,”
Phys. Fluids
,
25
(
11
), p.
117101
.
22.
Jacobs
,
E. N.
,
1932
, “
The Aerodynamic Characteristics of Eight Very Thick Airfoils From Tests in the Variable Density Wind Tunnel
,” National Advisory Committee for Aeronautics, Langley Aeronautical Laboratory, Langley Field, VA, Report No. NACA-TR-391.
23.
Garner
,
H. C.
, ed.,
1966
,
AGARDograph 109—Subsonic Wind Tunnel Wall Corrections
,
NATO-Advisory Group for Aerospace Research and Development
, Paris, France.
24.
Ewald
,
B. F. R.
, ed.,
1998
,
AGARDograph 336—Wind Tunnel Wall Corrections
,
NATO-Advisory Group for Aerospace Research and Development
, Neuilly-sur-Seine Cedex, France.
25.
Van Dyken
,
R. D.
,
Ekaterinaris
,
J. A.
,
Chandrasekhara
,
M. S.
, and
Platzer
,
M. F.
,
1996
, “
Analysis of Compressible Light Dynamic Stall Flow at Transitional Reynolds Numbers
,”
AIAA J.
,
34
(
7
), pp.
1420
1427
.
You do not currently have access to this content.