Some cracks were detected on the fir-tree root of turbine blade in an in-service aero-engine, and the aluminized coating was considered to be the main cause of these cracks. To study the effect of aluminized coating on fatigue life of turbine blade, the combined low and high cycle fatigue (CCF) tests are carried out at elevated temperature on both aluminized and untreated turbine blades. Probability analysis of test data is conducted and the result indicates that the median life is decreased by 62.2% due to the effect of the aluminized coating. Further study on the mechanism of crack initiation and propagation has been conducted based on fractography and cross section morphology analysis by using scanning electron microscope (SEM), and the results indicate: (1) The aluminized coating consists of two layers, of which the inner layer is considered to contain the σ phase and it reduces the resistance to fatigue of blade. (2) Many cavities are found in the inner layer of aluminized coating, which lead to the initiation of cracks and result in the reduction of crack initiation life. (3) The marker band widths of aluminized and untreated blade are very close, which indicated the aluminized coating may have no effect on the crack propagation life of the blade.

References

References
1.
Jedlinski
,
J.
, and
Borchardt
,
G.
,
1991
, “
On the Oxidation Mechanism of Alumina Formers
,”
Oxid. Met.
,
36
(
3–4
), pp.
317
337
.
2.
Rahmel
,
1978
, “Materials and Coatings to Resist High Temperature Corrosion,”
Applied Science Pub
,
126
(126), pp. 1789–1813.
3.
Kuenzly
,
J. D.
, and
Douglass
,
D. L.
,
1974
, “
The Oxidation Mechanism of Ni3Al Containing Yttrium
,”
Oxid. Met.
,
8
(
3
), pp.
139
178
.
4.
Daleo
,
J. A.
, and
Boone
,
D. H.
, “
Failure Mechanisms of Coating Systems Applied to Advanced Turbine Components
,”
ASME
Paper No. 97-GT-486
.
5.
Gleeson
,
B.
,
2006
, “
Thermal Barrier Coatings for Aeroengine Applications
,”
J. Propul. Power
,
22
(
2
), pp.
375
383
.
6.
Patnaik
,
P.
, and
Immarigeon
,
J.
,
1989
, “
Protective Coatings for Aero Engine Hot Section Components
,”
Mater. Manuf. Process.
,
4
(
3
), pp.
347
384
.
7.
Taylor
,
H. S.
,
1925
, “
A Theory of the Catalytic Surface
,”
Proc. R. Soc. London. Ser. A
,
108
(
745
), pp.
105
111
.
8.
Fromhold
,
A. T.
,
1975
,
Theory of Metal Oxidation
,
American Elsevier Pub. Co
., Amsterdam, The Netherlands.
9.
Birks
,
N.
,
Meier
,
G. H.
, and
Pettit
,
F. S.
,
2006
,
Introduction to the High Temperature Oxidation of Metals
,
Cambridge University Press
,
Cambridge, UK
.
10.
Godlewska
,
E.
,
Mitoraj
,
M.
, and
Morgiel
,
J.
,
2009
, “
Reaction and Diffusion Phenomena Upon Oxidation of a (γ+α2) TiAlNb Alloy in Air
,”
Mater. High Temp.
,
26
(
1
), pp.
99
103
.
11.
Niranatlumpong
,
P.
,
Ponton
,
C. B.
, and
Evans
,
H. E.
,
2000
, “
The Failure of Protective Oxides on Plasma-Sprayed NiCrAlY Overlay Coatings
,”
Oxid. Met.
,
53
(
3/4
), pp.
241
258
.
12.
Smialek
,
J. L.
, and
Lowell
,
C. E.
,
1974
, “
Effects of Diffusion on Aluminum Depletion and Degradation of NiAl Coatings
,”
J. Electrochem. Soc.
,
121
(
6
), pp.
800
805
.
13.
Vine
,
S. R. L.
,
1978
, “
Reaction Diffusion in the NiCrAl and CoCrAl Systems
,”
Metall. Mater. Trans. A
,
9
(
9
), pp.
1237
1250
.
14.
Kuppusami
,
P.
, and
Murakami
,
H.
,
2004
, “
A Comparative Study of Cyclic Oxidized Ir Aluminide and Aluminized Nickel Base Single Crystal Superalloy
,”
Surf. Coat. Technol.
,
186
(
3
), pp.
377
388
.
15.
Hindam
,
H. M.
,
1980
, “
Growth and Microstructure of α-Al2O3 on Ni–Al Alloys: Internal Precipitation and Transition to External Scale
,”
J. Electrochem. Soc.
,
127
(
7
), pp.
1622
1630
.
16.
Hindam
,
H.
, and
Whittle
,
D.
,
1983
, “
High Temperature Internal Oxidation Behaviour of Dilute Ni-Al Alloys
,”
J. Mater. Sci.
,
18
(
5
), pp.
1389
1404
.
17.
Strutt
,
A. J.
, and
Vecchio
,
K. S.
,
1999
, “
Simultaneous Oxidation and Sigma-Phase Formation in a Stainless Steel
,”
Metall. Mater. Trans. A
,
30
(
2
), pp.
355
362
.
18.
Firouzi
,
A.
, and
Shirvani
,
K.
,
2010
, “
The Structure and High Temperature Corrosion Performance of Medium-Thickness Aluminide Coatings on Nickel-Based Superalloy GTD-111
,”
Corros. Sci.
,
52
(
11
), pp.
3579
3585
.
19.
Rahmani
,
K.
, and
Nategh
,
S.
,
2008
, “
Influence of Aluminide Diffusion Coating on Low Cycle Fatigue Properties of René 80
,”
Mater. Sci. Eng. A
,
486
(
1–2
), pp.
686
695
.
20.
Andersen
,
P. J.
,
Boone
,
D. H.
, and
Paskiet
,
G. F.
,
1972
, “
A Comparison of the Effect of Inward and Outward Diffusion Aluminide Coatings on the Fatigue Behavior of Nickel-Base Superalloys
,”
Oxid. Met.
,
4
(
2
), pp.
113
119
.
21.
Yan
,
X. J.
,
Sun
,
R. J.
,
Ying
,
D.
,
Liu
,
Z. N.
, and
Nie
,
J. X.
,
2011
, “
Experimental Study on Fatigue Curve Law of Turbine Blade Under Combined High and Low Cycle Loading
,”
Hangkong Dongli Xuebao/J. Aerosp. Power
,
26
(
8
), pp.
1824
1829
.
22.
Chen
,
X.
, and
Yan
,
X.
, 2014, “
Combined Low and High Cycle Fatigue Tests on Full Scale Turbine Blades
,”
ASME
Paper No. GT2014-26569
.
23.
Hu
,
D.
, and
Wang
,
R.
,
2013
, “
Combined Fatigue Experiments on Full Scale Turbine Components
,”
Aircr. Eng. Aerosp. Technol.
,
85
(
1
), pp.
4
9
.
24.
Hu
,
D.
,
Meng
,
F.
,
Liu
,
H.
,
Song
,
J.
, and
Wang
,
R.
,
2016
, “
Experimental Investigation of Fatigue Crack Growth Behavior of GH2036 under Combined High and Low Cycle Fatigue
,”
Int. J. Fatigue
,
85
, pp.
1
10
.
25.
Wang
,
R.
,
Wei
,
J.
,
Hu
,
D.
,
Shen
,
X.
, and
Fan
,
J.
,
2013
, “
Investigation on Experimental Load Spectrum for High and Low Cycle Combined Fatigue Test
,”
Propul. Power Res.
,
2
(
4
), pp.
235
242
.
26.
Sun
,
R. J.
,
Yan
,
X. J.
, and
Nie
,
J. X.
,
2012
, “
Inverse Method for Estimating the Vibration Stress of Turbine Blades Based on Combined High-and-Low Cycle Fatigue Tests
,”
J. Aerosp. Power
,
27
(
2
), pp.
289
294
.
27.
Hou
,
N. X.
,
Wen
,
Z. X.
,
Yu
,
Q. M.
, and
Yue
,
Z. F.
,
2009
, “
Application of a Combined High and Low Cycle Fatigue Life Model on Life Prediction of SC Blade
,”
Int. J. Fatigue
,
31
(
4
), pp.
616
619
.
28.
Zielińska
,
M.
,
Zagulayavorska
,
M.
,
Sieniawski
,
J.
, and
Filip
,
R.
,
2013
, “
Microstructure and Oxidation Resistance of an Aluminide Coating on the Nickel Based Superalloy Mar M247 Deposited by the CVD Aluminizing Process
,”
Arch. Metall. Mater.
,
58
(
3
), pp.
697
701
.
29.
Niu
,
J.
,
Zhang
,
L. W.
,
Pei
,
J. B.
, and
Zhang
,
F. Y.
,
2006
, “
Research on the Microstructure of Al and Al-Si Coatings on K4104 Nickel-Based Superalloy
,”
Cailiao Rechuli Xuebao/Trans. Mater. Heat Treat.
,
27
(
4
), pp.
105
108
.
30.
Pei
,
J. B.
,
Zhang
,
L. W.
,
Niu
,
J.
, and
Zhang
,
Q. Z.
,
2008
, “
Microstructure and Formation Mechanism of Aluminized Coatings on Nickel-Based Superalloys
,”
Key Eng. Mater.
,
373–374
, pp.
204
207
.
31.
Kireev
,
V. B.
,
Kolyasnikova
,
N. V.
, and
Matyushenko
,
V. V.
,
1989
, “
Effect of Composition on the Formation of the Sigma-Phase in Nickel Alloys
,”
Met. Sci. Heat Treat.
,
31
(
12
), pp.
892
895
.
32.
Wangyao
,
P.
,
Pichaiwong
,
N.
,
Patama
,
V.
,
Chuankrerkkul
,
N.
, and
Hirunyagird
,
J.
,
2014
, “
Effects of Ni and Ni + Co Additions in P/M Stainless Steel 316 L on Sigma Phase and Oxide Formations After Long Term Heating
,”
Adv. Mater. Res.
,
894
, pp.
227
233
.
You do not currently have access to this content.