Experimentally measured results are presented for different experimental conditions for a test plate with double wall cooling, composed of full-coverage effusion-cooling on the hot side of the plate, and cross-flow cooling on the cold side of the plate. The results presented are different from those from past investigations, because of the addition of a significant mainstream pressure gradient. Main stream flow is provided along a passage with a contraction ratio of 4, given by the ratio upstream flow area, to downstream flow area. With this arrangement, local blowing ratio decreases significantly with streamwise development along the test section, for every value of initial blowing ratio considered, where this initial value is determined at the most upstream row of effusion holes. Experimental data are given for a sparse effusion hole array. The experimental results are provided for mainstream Reynolds numbers of 92,400–96,600, and from 128,400 to 135,000, and initial blowing ratios of 3.3–3.6, 4.4, 5.2, 6.1–6.3, and 7.3–7.4. Results illustrate the effects of blowing ratio for the hot side and the cold side of the effusion plate. Of particular interest are values of line-averaged film cooling effectiveness and line-averaged heat transfer coefficient, which are generally different for contraction ratio of 4, compared to a contraction ratio of 1, because of different amounts and concentrations of effusion coolant near the test surface. In regard to cold-side measurements on the crossflow side of the effusion plate, line-averaged Nusselt numbers for contraction ratio 4 are often less than values for contraction ratio 1, when compared at the same main flow Reynolds number, initial blowing ratio, and streamwise location.

References

References
1.
Rogers
,
N.
,
Ren
,
Z.
,
Buzzard
,
W.
,
Sweeney
,
B.
,
Tinker
,
N.
,
Ligrani
,
P. M.
,
Hollingsworth
,
K. D.
,
Liberatore
,
F.
,
Patel
,
R.
,
Ho
,
S.
, and
Moon
,
H.-K.
,
2016
, “
Effects of Double Wall Cooling Configuration and Conditions on Performance of Full Coverage Effusion Cooling
,”
ASME
Paper No. GT2016-56515.
2.
Schulz
,
A.
,
2001
, “
Combustor Liner Cooling Technology in Scope of Reduced Pollutant Formation and Rising Thermal Efficiencies
,”
Heat Transfer in Gas Turbine Systems
,
R. J.
Goldstein
, ed., Vol.
934
,
Annals of the New York Academy of Sciences
,
New York
, pp.
135
146
.
3.
Krewinkel
,
R.
,
2013
, “
A Review of Gas Turbine Effusion Cooling Studies
,”
Int. J. Heat Mass Transfer
,
66
, pp.
706
722
.
4.
Sasaki
,
M.
,
Takahara
,
K.
,
Kumagai
,
T.
, and
Hamano
,
M.
,
1979
, “
Film Cooling Effectiveness for Injection From Multirow Holes
,”
ASME J. Eng. Power
,
101
(
1
), pp.
101
108
.
5.
Martiny
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1995
, “
Full-Coverage Film Cooling Investigation: Adiabatic Wall Temperatures and Flow Visualization
,”
ASME
Paper No. 95-WA/HT-4
.
6.
Bailey
,
J. C.
,
Intile
,
J.
,
Tolpadi
,
A.
,
Fric
,
T.
,
Nirmalan
,
N. V.
, and
Bunker
,
R. S.
,
2002
, “
Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
125
(
4
), pp.
994
1002
.
7.
Lin
,
Y.
,
Song
,
B.
,
Li
,
B.
,
Liu
,
G.
, and
Wu
,
Z.
,
2003
, “
Investigation of Film Cooling Effectiveness of Full-Coverage Inclined Multihole Walls With Different Hole Arrangements
,”
ASME
Paper No. GT-2003-38881.
8.
Kelly
,
G. B.
, and
Bogard
,
D. G.
,
2003
, “
An Investigation of the Heat Transfer for Full Coverage Film Cooling
,”
ASME
Paper No. GT2003-38716.
9.
Jackowski
,
T.
,
Schulz
,
A.
,
Bauer
,
H.-J.
,
Gerendas
,
M.
, and
Behrendt
,
T.
,
2016
, “
Effusion Cooled Combustor Liner Tiles With Modern Cooling Concepts: A Comparative Experimental Study
,”
ASME
Paper No. GT2016-56598.
10.
Ji
,
Y.
,
Ge
,
B.
,
Zang
,
S.
,
Yu
,
J.
, and
Zhang
,
J.
,
2016
, “
Experimental Investigation of Effusion Cooling Performance on the Liner of a Scaled Three Injector Annular Combustor
,”
ASME
Paper No. GT2016-57035.
11.
Sung
,
Y.
,
Dord
,
A.
,
Laskowski
,
G. M.
,
Shunn
,
L.
,
Natsui
,
G.
, and
Kapat
,
J.
,
2016
, “
Detailed Large Eddy Simulations (LES) of Multi-Hole Effusion Cooling Flow for Gas Turbines
,”
ASME
Paper No. GT2016-57957.
12.
Wang
,
G.
,
Ledezma
,
G. A.
,
DeLancey
,
J.
, and
Wang
,
A.
,
2016
, “
Experimental and Numerical Investigations of Effusion Cooling for High Pressure Turbine Components—Part 1: Experimental Study With PSP
,”
ASME
Paper No. GT2016-56398
.
13.
Ledezma
,
G. A.
,
Lachance
,
J.
,
Wang
,
G.
,
Wang
,
A.
, and
Laskowski
,
G. M.
,
2016
, “
Experimental and Numerical Investigations of Effusion Cooling for High Pressure Turbine Components—Part 2: Numerical Results
,”
ASME
Paper No. GT2016-56400
.
14.
Ji
,
Y.
,
Ge
,
B.
,
Zang
,
S.
,
Xin
,
J.
,
Ye
,
C.
, and
Song
,
H.
,
2017
, “
Effect of Holes Array on Effusion Cooling Characteristics of a Three-Nozzle Model Combustor Liner
,”
ASME
Paper No. GT2017-64247
.
15.
Vinton
,
K. R.
, and
Wright
,
L. M.
,
2017
, “
Effect of Flow Acceleration on Mainstream-to-Coolant Flow Interaction for Round and Shaped Film Cooling Holes
,”
ASME
Paper No. GT2017-63818
.
16.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2017
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part I: Axial Shaped Holes
,”
ASME
Paper No. GT2017-64616
.
17.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2017
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part II: Compound Angle Shaped Holes
,”
ASME
Paper No. GT2017-64624
.
18.
Ren
,
Z.
,
Vanga
,
S. R.
,
Rogers
,
N.
,
Ligrani
,
P. M.
,
Hollingsworth
,
K. D.
,
Liberatore
,
F.
,
Patel
,
R.
,
Srinivasan
,
R.
, and
Ho
,
Y.
,
2017
, “
Internal and External Cooling of a Full Coverage Effusion Cooling Plate: Effects of Double Wall Cooling Configuration and Conditions
,”
ASME
Paper No. GT2017-64921
.
19.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
20.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
21.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.