The detailed characterization of the thermal boundary layer under periodic fluctuations is vital to improve the performance of cooled turbine airfoils, as well as to assess noise thermal and structural fatigue. In the present contribution, we performed detailed unsteady Reynolds-averaged Navier–Stokes (URANS) simulations to investigate wall heat flux response to periodic flow velocity fluctuations over a flat plate. We also investigated the boundary layer response to sudden flow acceleration including periodic flow perturbations, caused by inlet total pressure variations. During a flow acceleration phase, the boundary layer is first stretched, resulting in an increase of the wall shear stress. Later on, due to the viscous diffusion, the low momentum flow adjusts to the new free stream conditions. The behavior of the boundary layer at low frequency is similar to the response to an individual deceleration followed by one acceleration. However, at higher frequencies, the mean flow topology is completely altered. One would expect that higher acceleration rates would cause a further stretching of the boundary layer that should cause even greater wall shear stresses and heat fluxes. However, we observed the opposite; the amplitude of the skin friction coefficient is abated, while the peak level is a full order of magnitude smaller than at low frequency.

References

References
1.
Binder
,
A.
,
Forster
,
W.
,
Kruse
,
H.
, and
Rogge
,
H.
,
1985
, “
An Experimental Investigation Into the Effect of Wakes on the Unsteady Turbine Rotor Flow
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
458
465
.
2.
Arndt
,
N.
, “
Blade Row Interaction in a Multistage Low-Pressure Turbine
,”
ASME
Paper No. 91-GT-283.
3.
Giles
,
M. B.
,
1988
, “
Calculation of Unsteady Wake/Rotor Interaction
,”
J. Propul. Power
,
4
(
4
), pp.
356
362
.
4.
Chaluvadi
,
V.
,
Kalfas
,
A.
,
Banieghbal
,
M.
,
Hodson
,
H.
, and
Denton
,
J.
,
2001
, “
Blade-Row Interaction in a High-Pressure Turbine
,”
J. Propul. Power
,
17
(
4
), pp.
892
901
.
5.
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Garside
,
T.
, “
Effects of Rotation on Blade Surface Heat Transfer: An Experimental Investigation
,”
ASME
Paper No. 97-GT-188.
6.
Braun
,
J.
,
Saracoglu
,
B. H.
, and
Paniagua
,
G.
,
2016
, “
Unsteady Performance of Rotating Detonation Engines With Different Exhaust Nozzles
,”
J. Propul. Power
,
33
(
1
), pp.
121
130
.
7.
Paniagua
,
G.
,
Iorio
,
M.
,
Vinha
,
N.
, and
Sousa
,
J.
,
2014
, “
Design and Analysis of Pioneering High Supersonic Axial Turbines
,”
Int. J. Mech. Sci.
,
89
, pp.
65
77
.
8.
Grönman
,
A.
,
Turunen-Saaresti
,
T.
,
Jaatinen
,
A.
, and
Backman
,
J.
,
2010
, “
Numerical Modelling of a Supersonic Axial Turbine Stator
,”
J. Therm. Sci.
,
19
(
3
), pp.
211
217
.
9.
Sousa
,
J.
,
Paniagua
,
G.
, and
Saavedra
,
J.
,
2017
, “
Aerodynamic Response of Internal Passages to Pulsating Inlet Supersonic Conditions
,”
Comput. Fluids
,
149
, pp.
31
40
.
10.
Hasan
,
A. T.
,
2014
, “
Characteristics of Overexpanded Nozzle Flows in Imposed Oscillating Condition
,”
Int. J. Heat Fluid Flow
,
46
, pp.
70
83
.
11.
Stewartson
,
K. T.
,
1951
, “
On the Impulsive Motion of a Flat Plate in a Viscous Fluid
,”
Q. J. Mech. Appl. Math.
,
4
(
2
), pp.
182
198
.
12.
Stewartson
,
K.
,
1960
, “
The Theory of Unsteady Laminar Boundary Layers
,”
Adv. Appl. Mech.
,
6
, pp.
1
37
.
13.
Moore
,
F. K.
,
1951
, “
Unsteady Laminar Boundary-Layer Flow
,”
National Aeronautics and Space Administration
, Washington, DC, Technical Report, No. NACA-TN-2471.
14.
Huang
,
H.-S.
, and
Yang
,
W.-J.
,
1969
, “
Unsteady Compressible Laminar Boundary-Layer Flow Over a Flat Plate
,”
AIAA J.
,
7
(
1
), pp.
100
105
.
15.
Lighthill
,
M.
,
1953
, “
On Boundary Layers and Upstream Influence—I: A Comparison Between Subsonic and Supersonic Flows
,”
Proc. R. Soc. London A
,
217
(
1130
), pp.
344
357
.
16.
Lighthill
,
M.
,
1953
, “
On Boundary Layers and Upstream Influence. II. Supersonic Flows Without Separation
,”
Proc. R. Soc. London A
,
217
(
1131
), pp.
478
507
.
17.
Lighthill
,
M.
,
1950
, “
Contributions to the Theory of Heat Transfer Through a Laminar Boundary Layer
,”
Proc. R. Soc. London A
,
202
(
1070
), pp.
359
377
.
18.
Uchida
,
S.
,
1956
, “
The Pulsating Viscous Flow Superposed on the Steady Laminar Motion of Incompressible Fluid in a Circular Pipe
,”
Z. Angew. Math. Phys.
,
7
(
5
), pp.
403
422
.
19.
Mizushina
,
T.
,
Maruyama
,
T.
, and
Shiozaki
,
Y.
,
1974
, “
Pulsating Turbulent Flow in a Tube
,”
J. Chem. Eng. Jpn.
,
6
(
6
), pp.
487
494
.
20.
Shemer
,
L.
,
Wygnanski
,
I.
, and
Kit
,
E.
,
1985
, “
Pulsating Flow in a Pipe
,”
J. Fluid Mech.
,
153
(
1
), pp.
313
337
.
21.
Moschandreou
,
T.
, and
Zamir
,
M.
,
1997
, “
Heat Transfer in a Tube With Pulsating Flow and Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
40
(
10
), pp.
2461
2466
.
22.
Saavedra
,
J.
,
Lavagnoli
,
S.
, and
Paniagua
,
G.
,
2015
, “
Implications of Boundary Layer Establishment on Convective Heat Transfer Experiments
,”
AIAA
Paper No. 2015-0258.
23.
Celik
,
I. B.
,
Ghia
,
U.
, and
Roache
,
P. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
24.
Menter
,
F.
,
Langtry
,
R.
, and
Völker
,
S.
,
2006
, “
Transition Modelling for General Purpose CFD Codes
,”
Flow Turbul. Combust.
,
77
(
1–4
), pp.
277
303
.
25.
Clark
,
J.
, and
Grover
,
E.
,
2007
, “
Assessing Convergence in Predictions of Periodic-Unsteady Flowfields
,”
ASME J. Turbomach.
,
129
(
4
), pp.
740
749
.
26.
Launder
,
B. E.
, and
Jones
,
W. P.
,
1969
,
On the Prediction of Laminarisation
,
HM Stationery Office
, Richmond, UK.
27.
Spalart
,
P. R.
,
1986
, “
Numerical Simulation of Boundary Layers—Part 3: Turbulence and Relaminarization in Sink Flows
,”
National Aeronautics and Space Administration
, Washington, DC, NASA Technical Memorandum 88220.
28.
Narasimha
,
R.
, and
Sreenivasan
,
K.
,
1973
, “
Relaminarization in Highly Accelerated Turbulent Boundary Layers
,”
J. Fluid Mech.
,
61
(
3
), pp.
417
447
.
29.
Bader
,
P.
,
Pschernig
,
M.
,
Sanz
,
W.
,
Woisetschläger
,
J.
,
Heitmeir
,
F.
,
Meile
,
W.
, and
Brenn
,
G.
,
2016
, “
Flat-Plate Boundary Layers in Accelerated Flow
,”
ASME
Paper No. GT2016-56044.
You do not currently have access to this content.