Temperature and composition spots in a turbulent flow are detected and time-resolved using laser-induced thermal grating spectroscopy (LITGS). A 355 nm wavelength particle image velocimetry laser is operated at 0.5–1 kHz to generate the thermal grating using biacetyl as an absorber in trace amounts. In an open laminar jet, a feasibility study shows that small (≃ 3%) fluctuations in the mean flow properties are well captured with LITGS. However, corrections of the mean flow properties by the presence of the trace biacetyl are necessary to properly capture the fluctuations. The actual density and temperature variation in the flow are determined using a calibration procedure validated using a laminar jet flow. Finally, traveling entropy and composition spots are directly measured at different locations along a quartz tube, obtaining good agreement with expected values. This study demonstrates that LITGS can be used as a technique to obtain instantaneous, unsteady temperature and density variations in a combustion chamber, requiring only limited optical access.

References

References
1.
Chu
,
B. T.
, and
Kovasznay
,
L. C. G.
,
1958
, “
Non-Linear Interactions in a Viscous Heat-Conducting Compressible Gas
,”
J. Fluid Mech.
,
3
(
5
), pp.
494
514
.
2.
Morfey
,
C. L.
,
1973
, “
Amplification of Aerodynamic Noise by Convection Flow Inhomogeneities
,”
J. Sound Vib.
,
31
(
4
), pp.
391
397
.
3.
Ffowcs Williams
,
J. E.
, and
Howe
,
M. S.
,
1975
, “
The Generation of Sound by Density Inhomogeneities in Low Mach Number Nozzle Flows
,”
J. Fluid Mech.
,
70
(
3
), pp.
605
622
.
4.
Marble
,
F.
, and
Candel
,
S.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.
5.
Cumpsty
,
N. A.
,
1979
, “
Jet Engine Combustion Noise: Pressure, Entropy and Vorticity Perturbations Produced by Unsteady Combustion or Heat Addition
,”
J. Sound Vib.
,
66
(
4
), pp.
527
544
.
6.
Howe
,
M. S.
,
2010
, “
Indirect Combustion Noise
,”
J. Fluid Mech.
,
659
, pp.
267
288
.
7.
Magri
,
L.
,
O'Brien
,
J.
, and
Ihme
,
M.
,
2016
, “
Compositional Inhomogeneities as a Source of Indirect Combustion Noise
,”
J. Fluid Mech.
,
799
, p.
R4
.
8.
Polifke
,
W.
,
Paschereit
,
C. O.
, and
Döbbeling
,
K.
,
2001
, “
Constructive and Destructive Interference of Acoustic and Entropy Waves in a Premixed Combustor With a Choked Exit
,”
J. Acoust. Vib.
,
6
(
3
), pp.
135
146
.
9.
Goh
,
C. S.
, and
Morgans
,
A. S.
,
2013
, “
The Influence of Entropy Waves on the Thermoacoustic Stability of a Model Combustor
,”
Combust. Sci. Technol.
,
185
(
2
), pp.
249
268
.
10.
Hochgreb
,
S.
,
Dennis
,
D.
,
Ayranci
,
I.
,
Bainbridge
,
W.
, and
Cant
,
S.
,
2013
, “
Forced and Self-Excited Instabilities From Lean Premixed, Liquid-Fuelled Aeroengine Injectors at High Pressures and Temperatures
,”
ASME
Paper No. GT2013-95311.
11.
Dowling
,
A. P.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
65
100
.
12.
Ihme
,
M.
,
2017
, “
Combustion and Engine-Core Noise
,”
Annu. Rev. Fluid Mech.
,
49
(
1
), pp.
277
310
.
13.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gad Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.
14.
Goh
,
C. S.
, and
Morgans
,
A. S.
,
2011
, “
Phase Prediction of the Response of Choked Nozzles to Entropy and Acoustic Disturbances
,”
J. Sound Vib.
,
330
(
21
), pp.
5184
5198
.
15.
Moase
,
W.
,
Brear
,
M.
, and
Manzie
,
C.
,
2007
, “
The Forced Response of Choked Nozzles and Supersonic Diffusers
,”
J. Fluid Mech.
,
585
, pp.
281
304
.
16.
Duran
,
I.
, and
Moreau
,
S.
,
2013
, “
Solution of the Quasi One-Dimensional Linearized Euler Equations Using Flow Invariants and the Magnus Expansion
,”
J. Fluid Mech.
,
723
, pp.
190
231
.
17.
Motheau
,
E.
,
Nicoud
,
F.
,
Mery
,
Y.
, and
Poinsot
,
T.
,
2013
, “
Analysis and Modelling of Entropy Modes in a Realistic Aeronautical Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
092602
.
18.
Bohn
,
M. S.
,
1976
, “
Noise Produced by the Interaction of Acoustic Waves and Entropy Waves With High Speed Nozzle Flows
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
19.
Bake
,
F.
,
Richter
,
C.
,
Mühlbauer
,
B.
,
Kings
,
N.
,
Röhle
,
I.
,
Thiele
,
F.
, and
Noll
,
B.
,
2009
, “
The Entropy Wave Generator (EWG): A Reference Case on Entropy Noise
,”
J. Sound Vib.
,
326
(
3–5
), pp.
574
598
.
20.
Gaetani
,
P.
,
Persico
,
G.
, and
Spinelli
,
A.
,
2015
, “
Entropy Wave Generator for Indirect Combustion Noise in a High-Pressure Turbine
,”
11th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Madrid, Spain, Mar. 23–25.
21.
Knobloch
,
K.
,
Werner
,
T.
, and
Bake
,
F.
,
2015
, “
Noise Generation in Hot Nozzle Flow
,”
ASME
Paper No. GT2015-43702
.
22.
Giusti
,
A.
,
Worth
,
N. A.
,
Mastorakos
,
E.
, and
Dowling
,
A. P.
,
2017
, “
Experimental and Numerical Investigation Into the Propagation of Entropy Waves
,”
AIAA J.
,
55
(
2
), pp.
1
13
.
23.
De Domenico
,
F.
,
Rolland
,
E. O.
, and
Hochgreb
,
S.
,
2017
, “
Detection of Direct and Indirect Noise Generated by Synthetic Hot Spots in a Duct
,”
J. Sound Vib.
,
394
, pp.
220
236
.
24.
Rolland
,
E. O.
,
De Domenico
,
F.
, and
Hochgreb
,
S.
,
2017
, “
Theory and Application of Reverberated Direct and Indirect Noise
,”
J. Fluid Mech.
,
819
, pp.
435
464
.
25.
Tao
,
W.
,
Schuller
,
T.
,
Huet
,
M.
, and
Richecoeur
,
F.
,
2017
, “
Coherent Entropy Induced and Acoustic Noise Separation in Compact Nozzles
,”
J. Sound Vib.
,
394
, pp.
237
255
.
26.
Wassmer
,
D.
,
Schuermans
,
B.
,
Paschereit
,
C. O.
, and
Moeck
,
J. P.
,
2017
, “
Measurement and Modeling of the Generation and the Transport of Entropy Waves in a Model Gas Turbine Combustor
,”
Int. J. Spray Combust. Dynamics
,
9
(
4
), pp.
299
309
.
27.
Eckbreth
,
A.
,
1996
,
Laser Diagnostics for Combustion Temperature and Species
, Vol.
3
,
CRC Press, Taylor & Francis Group,
, Boca Raton, FL.
28.
Hanson
,
R. K.
, and
Davidson
,
D. F.
,
2014
, “
Recent Advances in Laser Absorption and Shock Tube Methods for Studies of Combustion Chemistry
,”
Prog. Energy Combust. Sci.
,
44
, pp.
103
114
.
29.
Rausch
,
A.
,
Fischer
,
A.
,
Konle
,
H.
,
Gaertlein
,
A.
,
Nitsch
,
S.
,
Knobloch
,
K.
,
Bake
,
F.
, and
Rohle
,
I.
,
2011
, “
Measurements of Density Pulsations in the Outlet Nozzle of a Combustion Chamber by Rayleigh-Scattering Searching Entropy Waves
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
031601
.
30.
Roy
,
S.
,
Gord
,
J. R.
, and
Patnaik
,
A. K.
,
2010
, “
Recent Advances in Coherent Anti-Stokes Raman Scattering Spectroscopy: Fundamental Developments and Applications in Reacting Flows
,”
Prog. Energy Combust. Sci.
,
36
(
2
), pp.
280
306
.
31.
Eichler
,
H.
,
Gunter
,
P.
, and
Pohl
,
D.
,
1986
,
Laser-Induced Dynamic Gratings
,
Springer
Berlin Heidelberg
.
32.
Cummings
,
E. B.
,
1994
, “
Laser-Induced Thermal Acoustics: Simple Accurate Gas Measurements
,”
Opt. Lett.
,
19
(
17
), pp.
1361
1363
.
33.
Paul
,
P. H.
,
Farrow
,
R. L.
, and
Danehy
,
P. M.
,
1995
, “
Gas-Phase Thermal Contributions to Four-Wave Mixing
,”
J. Opt. Soc. Am.
,
12
(
3
), pp.
384
392
.
34.
Stampanoni-Panariello
,
A.
,
Kozlov
,
D. N.
,
Radi
,
P. P.
, and
Hemmerling
,
B.
,
2005
, “
Gas Phase Diagnostics by Laser-Induced Gratings—I: Theory
,”
Appl. Phys. B
,
81
(1), pp.
101
111
.
35.
Latzel
,
H.
,
Dreizler
,
A.
,
Dreier
,
T.
,
Heinze
,
J.
,
Dillmann
,
M.
,
Stricker
,
W.
,
Lloyd
,
G. M.
, and
Ewart
,
P.
,
1998
, “
Thermal Grating and Broadband Degenerate Four-Wave Mixing Spectroscopy of OH in High-Pressure Flames
,”
Appl. Phys. B
,
673
(
5
), pp.
667
673
.
36.
Walker
,
D. J. W.
,
Williams
,
R. B.
, and
Ewart
,
P.
,
1998
, “
Thermal Grating Velocimetry
,”
Opt. Lett.
,
23
(
16
), pp.
1316
1318
.
37.
Stevens
,
R.
, and
Ewart
,
P.
,
2004
, “
Single-Shot Measurement of Temperature and Pressure Using Laser-Induced Thermal Gratings With a Long Probe Pulse
,”
Appl. Phys. B
,
117
(
1
), pp.
111
117
.
38.
Sander
,
T.
,
Altenhöfer
,
P.
, and
Mundt
,
C.
,
2014
, “
Development of Laser-Induced Grating Spectroscopy for Application in Shock Tunnels
,”
J. Thermophys. Heat Transfer
,
28
(
1
), pp.
27
31
.
39.
Williams
,
B.
, and
Ewart
,
P.
,
2012
, “
Photophysical Effects on Laser Induced Grating Spectroscopy of Toluene and Acetone
,”
Chem. Phys. Lett.
,
546
, pp.
40
46
.
40.
Förster
,
F. J.
,
Crua
,
C.
,
Davy
,
M.
, and
Ewart
,
P.
,
2017
, “
Time Resolved Gas Thermometry by Laser Induced Grating Spectroscopy With a High Repetition Rate Laser System
,”
Exp. Fluids
,
58
(
7
), pp.
1
8
.
41.
Cummings
,
E. B.
,
Leyva
,
I. A.
, and
Hornung
,
H. G.
,
1995
, “
Laser-Induced Thermal Acoustics (LITA) Signals From Finite Beams
,”
Appl. Opt.
,
34
(
18
), pp.
3290
3302
.
42.
Kiefer
,
J.
,
Kozlov
,
D. N.
,
Seeger
,
T.
, and
Leipertz
,
A.
,
2008
, “
Local Fuel Concentration Measurements for Mixture Formation Diagnostics Using Diffraction by Laser-Induced Gratings in Comparison to Spontaneous Raman Scattering
,”
J. Raman Spectrosc.
,
39
(
6
), pp.
711
721
.
43.
Eckbreth
,
A. C.
, and
Anderson
,
T. J.
,
1986
, “
Simultaneous Rotational Coherent Anti-Stokes Raman Spectroscopy and Coherent Stokes Raman Spectroscopy With Arbitrary pump-Stokes Spectral Separation
,”
Opt. Lett.
,
11
(
8
), pp.
496
498
.
44.
Willman
,
C.
, and
Ewart
,
P.
,
2016
, “
Multipoint Temperature Measurements in Gas Flows Using 1 D Laser Induced Grating Scattering
,”
Exp. Fluids
,
57
(
12
), pp.
1
9
.
45.
Lowe
,
S. M.
,
2017
, “
Quantitative Measurements of Temperature Using Laser-Induced Thermal Grating Spectroscopy in Reacting and Non-Reacting Flows
,” Ph.D. thesis, University of Cambridge, Cambridge, UK.
46.
Neely
,
W.
, and
Hall
,
T.
,
1972
, “
Vapor Pressure of Biacetyl
,”
J. Chem. Eng. Data
,
17
(
3
), pp.
294
295
.
You do not currently have access to this content.