Requirements for the start-up operations of gas turbine combined cycle (GTCC) power plants have become more diverse and now include such items as reduced start-up time, life consumption, and fuel gas consumption. In this paper, an optimization method is developed to solve these multi-objective problems. The method obtains optimized start-up curves by iterating the search for the optimal combination of the start-up parameter values and the evaluation of multiple objective functions. The start-up curves generated by this method were found to converge near the Pareto-front representing the best trade-off between the fuel gas consumption of the gas turbine (GT) and thermal stress in the steam turbine (ST) rotor which are defined as the objective functions. To demonstrate the effectiveness of the developed method, field tests were performed in a commercial power plant. As a result, the fuel gas consumption of HOT start-up was reduced by 22.8% compared with the past operation data. From this result, the developed method was shown to be capable of optimizing the start-up process for GTCC power plants.

References

References
1.
Knopf
,
B.
,
Nahmmacher
,
P.
, and
Schmid
,
E.
,
2015
, “
The European Renewable Energy Target for 2030—An Impact Assessment of the Electricity Sector
,”
Energy Policy
,
85
, pp.
50
60
.
3.
Greis
,
J.
,
Gobrecht
,
E.
, and
Wendt
,
S.
,
2012
, “
Flexible and Economical Operation of Power Plants—25 Years of Expertise
,”
ASME
Paper No. GT2012-68716.
4.
Balling
,
L.
, and
Pickard
,
A.
,
2012
, “
Security of Supply: A Remaining Challenge in the Energy Transition to a Greener Power Generation
,” Power-Gen Europe, Cologne, Germany, June 12–14.
5.
Checcacci
,
D.
,
Cosi
,
L.
, and
Sah
,
S.
,
2011
, “
Rotor Life Prediction and Improvement for Steam Turbines Under Cyclic Operation
,”
ASME
Paper No. GT2011-45792.
6.
Saito
,
K.
,
Sakuma
,
A.
, and
Fukuda
,
M.
,
2005
, “
Recent Life Assessment Technology for Existing Steam Turbines
,”
ASME
Paper No. PWR2005-50345.
7.
Henkel
,
N.
,
Schmid
,
E.
, and
Gobrecht
,
E.
,
2008
, “
Operational Flexibility Enhancements of Combined Cycle Power Plants
,”
Power-Gen Asia
,
Kuala Lumpur, Malaysia
, Oct. 21–23.https://www.energy.siemens.com/us/pool/hq/energy-topics/pdfs/en/combined-cycle-power-plants/OperationalFlexibilityEnhancementsofCombinedCyclePowerPlants.pdf
8.
Bohtz
,
C.
,
Stevens
,
M.
,
Sackmann
,
H.
, and
Ruedt
,
A.
,
2013
, “
District Heating With the Flexibility of the KA26 Combined Cycle Power Plant
,” Russia Power, Moscow, Russia, Mar. 5–6.
9.
McManus
,
M.
, and
Baumgartner
,
R.
,
2003
, “
An Integrated Combined-Cycle Plant Design That Provides Fast Start Capability at Base-Load
,”
Power-Gen
, Las Vegas, NV, Dec. 4–6.https://pdfs.semanticscholar.org/de4f/ad3688ab595c219c419196416636da2c5975.pdf
10.
Brückner
,
J.
, and
Schlund
,
G.
,
2011
, “
Pego Experience Confirms BENSON as Proven HRSG Technology
,”
Mod. Power Syst.
,
31
(6), pp.
21
24
.https://www.energy.siemens.com/ru/pool/hq/power-generation/power-plants/steam-power-plant-solutions/benson%20boiler/Pego_experience_confirms_BENSON_as_proven_HRSG_technology.pdf
11.
Alyah
,
M.
,
Ashman
,
J.
,
Arisoy
,
A.
,
Astley
,
E.
,
Herbst
,
E.
,
Jennings
,
P.
,
Gusev
,
A.
,
Emelyanov
,
R.
, and
Radevsky
,
R.
,
2015
, “
Combined Cycle Power Plants
,”
IMIA Annual Conference, Merida
, Mexico, Sept. 26–30.
12.
Casella
,
F.
, and
Pretolani
,
F.
,
2006
, “
Fast Start-Up of a Combined-Cycle Power Plant: A Simulation Study With Modelica
,”
Fifth International Modelica Conference
, Vienna, Austria, Sept. 4–5, pp. 3–10.https://www.researchgate.net/publication/237826713_Fast_Start-up_of_a_Combined-Cycle_Power_Plant_A_Simulation_Study_with_Modelica_Fast_Start-up_of_a_Combined-Cycle_Power_Plant_a_Simulation_Study_with_Modelica
13.
Balling
,
L.
,
2011
, “
Fast Cycling and Rapid Start-Up: New Generation of Plants Achieves Impressive Results
,”
Mod. Power Syst.
,
31
(1), pp.
35
41
.http://m.energy.siemens.com/nl/pool/hq/power-generation/power-plants/gas-fired-power-plants/combined-cycle-powerplants/Fast_cycling_and_rapid_start-up_US.pdf
14.
Ruchti
,
C.
,
Olia
,
H.
,
Franitza
,
K.
, and
Ehrsam
,
A.
,
2011
, “
Combined Cycle Power Plants as Ideal Solution to Balance Grid Fluctuations
,” Kraftwerkstechnisches Kolloquium, TU Dresden, Germany, Sept. 18–19.
15.
Vogt
,
J.
,
Schaaf
,
T.
,
Mohr
,
W.
, and
Helbig
,
K.
,
2013
, “
Flexibility Improvement of the Steam Turbine of Conventional or CCPP
,” Power-Gen Europe, Cologne, Germany, June 4–6.
16.
Gülen
,
S. C.
, and
Jones
,
C. M.
,
2011
, “
GE's Next Generation CCGT Plants: Operational Flexibility is the Key
,”
Mod. Power Syst.
,
35
(6), pp.
16
18
.https://www.bechtel.com/getattachment/about-us/insights/ge-next-generation-ccgt-plants/GE%E2%80%99s-next-generation-CCGT-plants-operational-flexibility-is-the-key.pdf
17.
Matsumoto
,
S.
,
Yakushi
,
K.
, and
Kitaguchi
,
N.
,
2010
, “
Optimal Turbine Startup Methodology Based on Thermal Stress Prediction
,”
Therm. Nucl. Power
,
61
(
9
), pp.
798
803
.
18.
Yoshida
,
Y.
,
Yamanaka
,
K.
,
Yamashita
,
A.
,
Iyanaga
,
N.
, and
Yoshida
,
T.
,
2016
, “
Coordinated Control of Gas and Steam Turbines for Efficient Fast Start-Up of Combined Cycle Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022601
.
19.
Bertini
,
I.
,
Felice
,
D. M.
,
Moretti
,
M.
, and
Pizzuti
,
S.
,
2010
, “
Start-Up Optimisation of a Combined Cycle Power Plant With Multiobjective Evolutionary Algorithms
,”
EvoApplications 2010: Applications of Evolutionary Computation
, Istanbul, Turkey, Apr. 7–9, pp.
151
160
.
20.
Ahmadi
,
P.
, and
Dincer
,
I.
,
2011
, “
Thermodynamic and Exergoenvironmental Analyses, and Multi-Objective Optimization of a Gas Turbine Power Plant
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2529
2540
.
21.
Hajabdollahi
,
F.
,
Hajabdollahi
,
Z.
, and
Hajabdollahi
,
H.
,
2012
, “
Soft Computing Based Multi-Objective Optimization of Steam Cycle Power Plant Using NSGA-II and ANN
,”
Appl. Soft Comput.
,
12
(
11
), pp.
3648
3655
.
22.
Inui
,
T.
,
Nishijima
,
T.
,
Kusaka
,
I.
,
Kashiwahara
,
K.
, and
Fukushima
,
K.
,
1981
, “
Combined Cycle Power Plant
,”
Hitachi Rev.
,
63
(
7
), pp.
443
448
.
23.
Deb
,
K.
,
Agrawal
,
S.
,
Pratap
,
A.
, and
Meysrivan
,
T.
,
2000
, “
A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II
,”
Parallel Problem Solving From Nature VI Conference
, Paris, France, Sept. 18–20, pp.
849
858
.
24.
Deb
,
K.
,
Agrawal
,
S.
,
Pratap
,
A.
, and
Meysrivan
,
T.
,
2002
, “
A: Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II
,”
IEEE Trans Evol. Comput.
,
6
(
2
), pp.
182
197
.
25.
Deb
,
K.
, and
Gulati
,
S.
,
2001
, “
Design of Truss-Structures for Minimum Weight Using Genetic Algorithms
,”
Finite Elem. Anal. Des.
,
37
(
5
), pp.
447
465
.
26.
Deb
,
K.
,
2014
, “
Analysing Mutation Schemes for Real-Parameter Genetic Algorithms
,”
Int. J. Artif. Intell. Soft Comput.
,
4
(
1
), pp.
1
28
.
27.
Langer
,
B. F.
,
1962
, “
Design of Pressure Vessels for Low-Cycle Fatigue
,”
ASME J. Basic Eng.
,
84
(
3
), pp.
389
399
.
28.
Sonsino
,
C. M.
,
2007
, “
Course of SN-Curves especially in the High-Cycle Fatigue Regime With Regard to Component Design and Safety
,”
Int. J. Fatigue
,
29
(
12
), pp.
2246
2258
.
29.
Gülen
,
S. C.
, and
Kim
,
K.
,
2014
, “
Gas Turbine Combined Cycle Dynamic Simulation: A Physics Based Simple Approach
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011601
.
30.
Yoshida
,
Y.
,
Yamanaka
,
K.
,
Yamashita
,
A.
,
Iyanaga
,
N.
, and
Yoshida
,
T.
,
2017
, “
Optimal Start-Up Control of Combined Cycle Power Plants Using the Multi-Objective Evolutionary Algorithm
,”
Trans. JSME
,
83
(
847
), p.
16-00433
.
You do not currently have access to this content.