This paper presents a new gas bearing concept that targets machine applications in the megawatt (MW) power range. The concept involves combining a compliant hybrid gas bearing (CHGB) with two hermetically sealed squeeze film damper (HSFD) modules installed in the bearing support damper cavities. The main aim of the research was to demonstrate gas bearing-support damping levels using HSFD that rival conventional open-flow squeeze film dampers (SFD) in industry. A detailed description of the bearing design and functionality is discussed while anchoring the concept through a brief recap of past gas bearing concepts. Proof-of-concept experimental testing is presented involving parameter identification of the bearing support force coefficients along with a demonstration of speed and load capability using recessed hydrostatic pads. Finally, a landing test was performed on the bearing at high speed and load with porous carbon pads to show capability of sustaining rubs at high speeds. The component testing revealed robust viscous damping in the bearing support, which was shown to be comparable to existing state of the art SFD concepts. The damping and stiffness of the system-portrayed moderate frequency dependency, which was simulated using a 2D Reynolds-based incompressible fluid flow model. Finally, rotating tests demonstrated the ability of the gas bearing concept to sustain journal excursions and loads indicative of critical speed transitions experienced in large turbomachinery.

References

1.
Agrawal
,
G.
,
1990
, “
Foil Gas Bearings for Turbomachinery
,”
SAE
Technical Paper No. 901236.
2.
Lubell
,
D. R.
,
Wade
,
J. L.
,
Chauhan
,
N. S.
, and
Nourse
,
J. G.
,
2008
, “
Identification and Correction of Rotor Instability in an Oil-Free Gas Turbine
,”
ASME
Paper No. GT2008-50305
.
3.
Kingsbury
,
A.
,
1897
, “
Experiments With an Air-Lubricated Journal
,”
J. Am. Soc. Nav. Eng.
,
9
(
2
), pp.
267
292
.
4.
Gross
,
W. A.
,
1962
,
Gas Film Lubrication
,
Wiley
,
New York
, p.
279
.
5.
Blok
,
H.
, and
van Rossum
,
J. J.
,
1953
, “
The Foil Bearing-New Departure in Hydrodynamic Lubrication
,”
ASLE J. Lubr. Eng.
,
9
, pp.
316
330
.
6.
Lund
,
J. W.
,
1967
, “
A Theoretical Analysis of Whirl Instability and Pneumatic Hammer for a Rigid Rotor in Pressurized Gas Journal Bearings
,”
ASME J. Lubr. Technol.
,
89
(
2
), pp.
154
166
.
7.
Licht
,
L.
,
Fuller
,
D. D.
, and
Sternlicht
,
B.
,
1958
, “
Self-Excited Vibrations on an Air-Lubricated Thrust Bearing
,” Trans. ASME,
80
, pp.
411
414
.
8.
Stowell
,
T. B.
,
1971
, “
Pneumatic Hammer in a Gas Lubricated Externally Pressurized Annular Thrust Bearing
,”
ASME J. Lubr. Technol.
,
93
(
4
), pp.
498
503
.
9.
Talukder
,
H. M.
, and
Stowell
,
T. B.
,
2003
, “
Pneumatic Hammer in an Externally Pressurized Orifice-Compensated Air Journal Bearing
,”
Tribol. Int.
,
36
(
8
), pp.
585
591
.
10.
Morosi
,
S.
, and
Santos
,
I.
,
2011
, “
Active Lubrication Applied to Radial Gas Journal Bearings—Part 1: Modeling
,”
Tribol. Int.
,
44
(
12
), pp.
1949
1958
.
11.
Pierart
,
G. F.
, and
Santos
,
I.
,
2016
, “
Active Lubrication Applied to Radial Gas Journal Bearings—Part 2: Modeling Improvement and Experimental Validation
,”
Tribol. Int.
,
96
, pp.
237
246
.
12.
Kazimierski
,
Z.
, and
Jarzecki
,
K.
,
1979
, “
Stability Threshold of Flexibly Supported Hybrid Gas Journal Bearings
,”
ASME J. Lubr. Technol.
,
101
(
4
), pp.
451
457
.
13.
Tatara
,
A.
,
Koike
,
H.
, and
Iwasaki
,
A.
,
1973
, “
The Stability of Flexibly Supported, Externally Pressurized Gas Journal Bearings
,”
Bull. JSME
,
16
(
100
), pp.
1573
1579
.
14.
Carpino
,
M.
, and
Peng
,
J.
,
1994
, “
Theoretical Performance of a Hydrostatic Foil Bearing
,”
ASME J. Tribol.
,
116
(
1
), pp.
83
89
.
15.
Kumar
,
M.
, and
Kim
,
D.
,
2008
, “
Parametric Studies on Dynamic Performance of Hybrid Airfoil Bearing
,”
ASME J. Eng. Gas Turbines Power
,
130
(
6
), p.
062501
.
16.
Rimpel
,
A.
, and
Kim
,
D.
,
2009
, “
Experimental and Analytical Studies on Flexure Pivot Tilting Pad Gas Bearings With Dampers Applied to Radially Compliant Pads
,”
ASME J. Tribol.
,
131
(
4
), p.
041001
.
17.
Ertas
,
B. H.
,
2008
, “
Compliant Hybrid Journal Bearings Using Integral Wire Mesh Dampers
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022503
.
18.
Ertas
,
B. H.
,
Camatti
,
M.
, and
Mariotti
,
G.
,
2009
, “
Synchronous Response to Rotor Imbalance Using a Damped Gas Bearing
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
032501
.
19.
Delgado
,
A.
, “
Experimental Identification of Dynamic Force Coefficients for a 110 MM Compliantly Damped Hybrid Gas Bearing
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072502
.
20.
San Andrés
,
L.
,
Chirathadam
,
T. A.
, and
Kim
,
T. H.
,
2010
, “
Measurement of Structural Stiffness and Damping Coefficients in a Metal Mesh Foil Bearing
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
032503
.
21.
Feng
,
K.
,
Liu
,
Y.
,
Zhao
,
X.
, and
Liu
,
W.
,
2016
, “
Experimental Evaluation of the Structure Characterization of a Novel Hybrid Bump-Metal Mesh Foil Bearing
,”
ASME J. Tribol.
,
138
(
2
), p.
021702
.
22.
Ertas
,
B. H.
,
Delgado
,
A.
, and
Moore
,
J. J.
,
2017
, “
Dynamic Characterization of an Integral Squeeze Film Bearing Support Damper for a Super-Critical CO2 Expander
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
052501
.
23.
Della Pietra
,
L.
, and
Adiletta
,
G.
,
2002
, “
The Squeeze Film Damper Over Four Decades of Investigations—Part I: Characteristics and Operating Features
,”
Shock Vib. Dig.
,
34
(
1
), pp.
3
26
.
24.
Taylor
,
D. L.
, and
Fehr
,
V. S.
,
1982
, “
Analysis and Design of Segmented Dampers for Rotor Dynamic Control
,”
ASME J. Lubr. Technol.
,
104
(
1
), pp.
84
90
.
25.
Ide
,
R. D.
, and
Zeidan
,
F. Y.
,
1995
, “
Integral Squeeze Film Damper Bearings
,” U.S. Patent No. 5,421,655.
26.
Leader
,
M. E.
,
Whalen
,
J. K.
, and
Grey
,
G. G.
,
1995
, “
The Design and Application of a Squeeze Film Damper Bearing to a Flexible Steam Turbine Rotor
,”
24th Turbomachinery Symposium
, Houston, TX, pp.
49
58
.https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/163466/T2449-58.pdf?sequence=1&isAllowed=y
27.
Kanki
,
H.
,
Kaenko
,
Y.
,
Kurosawa
,
M.
, and
Yamamoto
,
T.
,
1998
, “
Prevention of Low-Frequency Vibration of High-Capacity Steam Turbine Units by Squeeze-Film Damper
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
391
396
.
28.
Ertas
,
B.
, and
Delgado
,
A.
,
2018
, “
Hermetically Sealed Squeeze Film Damper for Operation in Oil-Free Environments
,” ASME J. Eng. Gas Turbines Power (in press).
29.
Ertas
,
B. H.
,
Delgado
,
A. M.
,
Hallman
,
D. L.
, and
Smith
,
W. J.
,
2016
, “
Journal Bearing Assemblies and Methods of Assembling Same
,” U.S. Patent No.
9429191
.https://patents.google.com/patent/US9429191
30.
Magge
,
N.
,
1975
, “
Philosophy, Design, and Evaluation of Soft-Mounted Engine Rotor Systems
,”
J. Aircr.
,
12
(
4
), pp.
318
324
.
31.
San Andrés
,
L.
, and
Delgado
,
A.
,
2007
, “
Identification of Force Coefficients in a Squeeze Film Damper With a Mechanical End Seal—Centered Circular Orbit Tests
,”
ASME J. Tribol.
,
129
(
3
), pp.
660
668
.
32.
Delgado
,
A.
,
Cantanzaro
,
M.
,
Mitanitonna
,
N.
, and
Gerbet
,
M.
,
2011
, “
Identification of Force Coefficients in a 5-pad Tilting Pad Bearing With an Integral Squeeze Film Damper
,”
EDF/Pprime PoitiersWorkshop
, Poitiers, France, Oct. 6–7, pp.
1
20
.
33.
Ertas
,
B. H.
, and
Delgado
,
A. M.
,
2016
, “
Gas Bearing Having Integrally Formed Components
,” U.S. Patent No. 9416820.
34.
Mook
,
T. J.
,
Ertas
,
B. H.
, and
Bellardi
,
J. J.
,
2017
, “
Bearing
,” U.S. Patent No. 9746029.
35.
San Andres
,
L.
,
Cable
,
A.
,
T.
,
Zheng
,
Y.
,
De Santiago
,
O.
, and
Devitt
,
D.
,
2016
, “
Assessment of Porous Type Gas Bearings: Measurements of Bearing Performance and Rotor Vibrations
,”
ASME
Paper No. GT2016-57876
.
36.
Ertas
,
B.
, and
Delgado
,
A.
,
2018
, “
Dynamic Characterization of a Novel Externally Pressurized Compliantly Damped Gas-Lubricated Bearing With Hermetically Sealed Squeeze Film Dampers
,” ASME J. Eng. Gas Turbines Power (in press).
You do not currently have access to this content.