Turbomachinery rotor–stator unilateral contact induced interactions play a growing role in lifecycle analysis and thus motivate the use of accurate numerical prediction tools. Recent literature confirmed by ongoing in-house experiments have shown the importance of thermomechanical coupling effects in such interactions. However, most available (possibly reduced-order) models are restricted to the sole mechanical aspects. This work describes a reduction technique of thermomechanical models involving unilateral contact and frictional contact occurrences between rotor and stator components. The proposed methodology is grounded on Guyan and Craig–Bampton methods for the reduction of the structural dynamics in conjunction with Krylov subspace techniques, and specifically the Craig–Hale approach, for the reduction of the thermal equations. The method has the capability to drastically reduce the size of the model while preserving accuracy. It stands as a reliable strategy to perform simulations of thermomechanical models with localized mechanical and thermal loads.

References

References
1.
Jacquet-Richardet
,
G.
,
Torkhani
,
M.
,
Cartraud
,
P.
,
Thouverez
,
F.
,
Nouri-Baranger
,
T.
,
Herran
,
M.
,
Gibert
,
C.
,
Baguet
,
S.
,
Almeida
,
P.
, and
Peletan
,
L.
,
2013
, “
Rotor to Stator Contacts in Turbomachines. Review and Application
,”
Mech. Syst. Signal Process.
,
40
(
2
), pp.
401
420
.
2.
Legrand
,
M.
,
Batailly
,
A.
, and
Pierre
,
C.
,
2011
, “
Numerical Investigation of Abradable Coating Removal in Aircraft Engines Through Plastic Constitutive Law
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011010
.
3.
Batailly
,
A.
,
Agrapart
,
Q.
,
Millecamps
,
A.
, and
Brunel
,
J.-F.
,
2016
, “
Experimental and Numerical Simulation of a Rotor/Stator Interaction Event Localized on a Single Blade Within an Industrial High-Pressure Compressor
,”
J. Sound Vib.
,
375
, pp.
308
331
.
4.
Batailly
,
A.
,
Legrand
,
M.
,
Cartraud
,
P.
, and
Pierre
,
C.
,
2010
, “
Assessment of Reduced Models for the Detection of Modal Interaction Through Rotor Stator Contacts
,”
J. Sound Vib.
,
329
(
26
), pp.
5546
5562
.
5.
Goldman
,
P.
, and
Muszynska
,
A.
,
1995
, “
Rotor-to-Stator, Rub-Related, Thermal/Mechanical Effects in Rotating Machinery
,”
Chaos, Solitons Fractals
,
5
(
9
), pp.
1579
1601
.
6.
Almeida
,
P.
,
Gibert
,
C.
,
Thouverez
,
F.
,
Leblanc
,
X.
, and
Ousty
,
J.-P.
,
2014
, “
Experimental Analysis of Dynamic Interaction Between a Centrifugal Compressor and Its Casing
,”
ASME J. Turbomach.
,
137
(
3
), p.
01574149
.
7.
Murthy
,
R.
,
Wang
,
X. Q.
,
Matney
,
A.
, and
Mignolet
,
M.
,
2017
, “
A Construction of Thermal Basis Functions for Coupled Structural-Thermal Reduced Order Models
,”
AIAA
Paper No. 2017-0179.
8.
Zukowski
,
E.
,
Wilde
,
J.
,
Rudnyi
,
E.-B.
, and
Korvink
,
J.-G.
,
2005
, “
Model Reduction for Thermo-Mechanical Simulation of Packages
,”
International Workshop on Thermal Investigation of ICs and Systems
, Belgirate, Italy, Sept. 27–30, pp.
134
138
.
9.
Bechtold
,
T.
,
Salimbahrami
,
B.
,
Rudnyi
,
E. B.
,
Lohmann
,
B.
, and
Korvink
,
J. G. G.
,
2003
, “
Krylov-Subspace-Based Order Reduction Methods Applied to Generate Compact- Electro-Thermal Models for MEMS
,”
NSTI Nanotechnology Conference & Trade Show Nanotech
, Jan., San Francisco, CAhttps://hal.archives-ouvertes.fr/hal-01615922/document.
10.
Botto
,
D.
,
Zucca
,
S.
, and
Gola
,
M.
,
2007
, “
Reduced-Order Models for the Calculation of Thermal Transients of Heat Conduction/Convection Fe Models
,”
J. Therm. Stresses
,
30
(
8
), pp.
819
839
.
11.
Nachtergaele
,
P.
,
Rixen
,
D.
, and
Steenhoek
,
A.
,
2010
, “
Efficient Weakly Coupled Projection Basis for the Reduction of Thermo-Mechanical Models
,”
J. Comput. Appl. Math.
,
234
(
7
), pp.
2272
2278
.
12.
Guérin
,
N.
,
Thouverez
,
F.
,
Gibert
,
C.
,
Legrand
,
M.
, and
Almeida
,
P.
,
2017
, “
Thermomechanical Component Mode Synthesis for Blade Casing Interaction Prediction
,”
ASME
Paper No. GT2017-64342
.
13.
Grimme
,
J. E.
,
1997
, “
Krylov Projection Methods for Model Reduction
,”
Ph.D. thesis
, University of Illinois at Urbana-Champaign, Champaign, ILhttps://perso.uclouvain.be/paul.vandooren/ThesisGrimme.pdf.
14.
Freund
,
R. W.
,
2000
, “
Krylov-Subspace Methods for Reduced-Order Modeling in Circuit Simulation
,”
J. Comput. Appl. Math.
,
123
(
1–2
), pp.
395
421
.
15.
Craig
,
R. R.
, and
Bampton
,
M.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
16.
Craig
,
R. R.
, and
Hale
,
A. L.
,
1988
, “
Block-Krylov Component Synthesis Method for Structural Model Reduction
,”
J. Guid., Control, Dyn.
,
11
(
6
), pp.
562
570
.
17.
Thorin
,
A.
,
Guérin
,
N.
,
Legrand
,
M.
,
Thouverez
,
F.
, and
Almeida
,
P.
,
2018
, “
Nonsmooth Thermoelastic Simulations of Blade-Casing Contact Interactions
,”
ASME Paper No. GT2018-75959.
18.
Padova
,
C.
,
Barton
,
J.
,
Dunn
,
M.
, and
Manwaring
,
S.
,
2006
, “
Experimental Results From Controlled Blade Tip/Shroud Rubs at Engine Speed
,”
ASME J. Turbomach.
,
129
(
4
), pp.
713
723
.
19.
Parent
,
M.-O.
, and
Thouverez
,
F.
,
2016
, “
Phenomenological Model for Stability Analysis of Bladed Rotor-to-Stator Contacts
,”
16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Apr. 10–15https://hal.archives-ouvertes.fr/hal-01537643/document.
20.
Legrand
,
M.
,
Pierre
,
C.
,
Cartraud
,
P.
, and
Lombard
,
J.-P.
,
2009
, “
Two-Dimensional Modeling of an Aircraft Engine Structural Bladed Disk-Casing Modal Interaction
,”
J. Sound Vib.
,
319
(
1–2
), pp.
366
391
.
21.
Stewart
,
D.
,
2000
, “
Rigid-Body Dynamics With Friction and Impact
,”
SIAM Rev.
,
42
(
1
), pp.
3
39
.
22.
Acary
,
V.
, and
Brogliato
,
B.
,
2008
,
Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics
,
Springer
, Berlin.
23.
Ireman
,
P.
,
Klarbring
,
A.
, and
Strmberg
,
N.
,
2002
, “
Finite Element Algorithms for Thermoelastic Wear Problems
,”
Eur. J. Mech.-A/Solids
,
21
(
3
), pp.
423
440
.
24.
Besselink
,
B.
,
Tabak
,
U.
,
Lutowska
,
A.
,
van de Wouw
,
N.
,
Nijmeijer
,
H.
,
Rixen
,
D.
,
Hochstenbach
,
M.
, and
Schilders
,
W.
,
2013
, “
A Comparison of Model Reduction Techniques From Structural Dynamics, Numerical Mathematics and Systems and Control
,”
J. Sound Vib.
,
332
(
19
), pp.
4403
4422
.
25.
Qu
,
Z.-Q.
,
2004
,
Model Order Reduction Techniques
,
Springer
, London.
26.
Schilders
,
W.
, and
Lutowska
,
A.
,
2014
, “
A Novel Approach to Model Order Reduction for Coupled Multiphysics Problems
,”
Reduced Order Methods for Modeling and Computational Reduction
(Modeling, Simulation and Applications Book Series, Vol.
9
),
Springer
, Berlin, pp.
1
49
.
27.
MacNeal
,
R.
,
1971
, “
A Hybrid Method of Component Mode Synthesis
,”
Comput. Struct.
,
1
(
4
), pp.
581
601
.
28.
Bladh
,
R.
,
Pierre
,
C.
, and
Castanier
,
M.
,
2003
, “
Numerical Instability of Classical Free-Interface Component Mode Synthesis Techniques
,”
AIAA J.
,
41
(
8
), pp.
1621
1624
.
29.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), pp.
380
380
.
30.
Arnoldi
,
W. E.
,
1951
, “
The Principle of Minimized Iterations in the Solution of the Matrix Eigenvalue Problem
,”
Q. Appl. Math.
,
9
(
1
), pp.
17
29
.
31.
Lanczos
,
C.
,
1950
, “
An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators
,”
J. Res. Natl. Bureau Standards
,
45
(
4
), pp.
255
282
.
32.
Bai
,
Z.
, and
Su
,
Y.
,
2005
, “
Dimension Reduction of Large-Scale Second-Order Dynamical Systems Via a Second-Order Arnoldi Method
,”
SIAM J. Sci. Comput.
,
26
(
5
), pp.
1692
1709
.
33.
Elfadel
,
I. M.
, and
Ling
,
D. D.
,
1997
, “
A Block Rational Arnoldi Algorithm for Multipoint Passive Model-Order Reduction of Multiport RLC Networks
,”
IEEE/ACM International Conference on Computer-Aided Design
(
ICCAD
), San Jose, CA, Nov. 9–13, pp.
66
71
.
34.
Pohle
,
M.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2012
, “
Reduced Order Model of Mistuned Bladed Disks Using the Krylov-Subspace Combined With the Craig-Bampton Reduction Technique
,”
Tenth World Congress on Computational Mechanics
, São Paulo, Brazil, July 8–13, pp.
899
908
.
35.
Cardona
,
A.
, and
Idelsohn
,
S.
,
1986
, “
Solution of Non-Linear Thermal Transient Problems by a Reduction Method
,”
Int. J. Numer. Methods Eng.
,
23
(
6
), pp.
1023
1042
.
You do not currently have access to this content.