Recent technological advances in the field of additive manufacturing have made possible to manufacture turbine engine components characterized by controlled permeability in desired areas. These have shown great potential in cooling application such as convective cooling and transpiration cooling and may in the future contribute to an increase of the turbine inlet temperature. This study investigates the effects of the pressure ratio, the thickness of the porous material, and the hatch distance used during manufacturing on the discharge coefficient. Moreover, two different porous structures were tested, and in total, 70 test objects were investigated. Using a scanning electron microscope, it is shown that the porosity and pore radius distribution, which are a result from the used laser power, laser speed, and hatch distance during manufacturing, will characterize the pressure losses in the porous sample. Furthermore, the discharge coefficient increases with increasing pressure ratio, while it decreases with increasing thickness to diameter ratio. The obtained experimental data were used to develop a correlation for the discharge coefficient as a function of the geometrical properties and the pressure ratio.

References

References
1.
Montillet
,
A.
,
2004
, “
Flow Through a Finite Packed Bed of Spheres: A Note on the Limit of Applicability of the Forchheimer-Type Equation
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
139
143
.
2.
Zistl
,
S.
,
2016
, “3D Printing: Facts & Forecasts,” Siemens' Pictures of the Future, Munich, Germany, accessed Jan. 20, 2017, http://www.siemens.com/innovation/en/home/pictures-of-the-future/industry-and-automation/Additive-manufacturing-facts-and-forecasts.html
3.
Darcy
,
H.
,
1856
,
Les Fontaines Publiques de la Ville de Dijon
,
Dalmont
,
Paris, France
.
4.
Forchheimer
,
P.
,
1901
, “
Wasserbewegung durch Boden
,”
Z. Ver. Deutsch. Ing.
,
45
, pp.
1736
1741
.
5.
Forchheimer
,
P.
,
1901
, “
Wasserbewegung durch Boden
,”
Z. Ver. Deutsch. Ing.
,
45
, pp.
1781
1788
.
6.
Antohe
,
B.
,
Lage
,
J.
,
Price
,
D.
, and
Weber
,
R.
,
1997
, “
Experimental Determination of Permeability and Inertia Coefficients of Mechanically Compressed Aluminum Porous Matrices
,”
ASME J. Fluids Eng.
,
119
(
2
), pp.
404
412
.
7.
Khayargoli
,
P.
,
Loya
,
V.
,
Lefebvre
,
L.
, and
Medraj
,
M.
,
2004
, “
The Impact of Microstructure on the Permeability of Metal Foams
,”
CSME 2004 Forum
, pp.
220
228
.
8.
Reutter
,
O.
,
Smirnova
,
E.
,
Sauerhering
,
J.
,
Angel
,
S.
,
Fend
,
T.
, and
Pitz-Paal
,
R.
,
2008
, “
Characterization of Air Flow Through Sintered Metal Foams
,”
ASME J. Fluids Eng.
,
130
(
5
), p. 051201.
9.
Yangpeng
,
L.
,
Guoquiang
,
X.
,
Luo
,
X.
,
Jiandong
,
M.
, and
Haiwang
,
L.
,
2015
, “
Effect of Porosity on Flow Behavior and Heat Transfer Characteristics of Sintered Woven Wire Mesh Structures
,”
ASME
Paper No. GT2015-42734.
10.
Crosnier
,
S.
,
Riva
,
R.
,
Bador
,
B.
, and
Blet
,
V.
,
2003
, “
Modeling of Gas Flow Through Metallic Foams
,”
First European Hydrogen Energy Conference, Alpexpo-Alpes Congrés, Grenobel, France, Sept. 2–5
.
11.
Medraj
,
M.
,
Baril
,
E.
,
Loya
,
V.
, and
Lefebvre
,
L.-P.
,
2007
, “
The Effect of Microstructure on the Permeability of Metallic Foams
,”
J. Mater. Sci.
,
42
(
12
), pp.
4372
4383
.
12.
Dukhan
,
N.
, and
Patel
,
K.
,
2011
, “
Effect of Sample's Length on Flow Properties of Open-Cell Metal Foam and Pressure-Drop Correlations
,”
J. Porous Mater.
,
18
(
6
), pp.
655
665
.
13.
Oun
,
H.
, and
Kennedy
,
A.
,
2014
, “
Experimental Investigation of Pressure-Drop Characteristics Across Multi-Layer Porous Metal Structures
,”
J. Porous Mater.
,
21
(
6
), pp.
1133
1141
.
14.
Liu
,
Y.-Q.
,
Jiang
,
P.-X.
,
Xiong
,
Y.-B.
, and
Wang
,
Y.-P.
,
2013
, “
Experimental and Numerical Investigation of Transpiration Cooling for Sintered Porous Flat Plates
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
997
1007
.
15.
Yap
,
C.
,
Chua
,
C.
,
Dong
,
Z.
,
Liu
,
Z.
,
Zhang
,
D.
,
Loh
,
L.
, and
Sing
,
S.
,
2015
, “
Review of Selective Laser Melting: Materials and Applications
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041101
.
16.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
557
563
.
17.
Binder
,
C.
,
Kinell
,
M.
,
Utriainen
,
E.
,
Eriksson
,
D.
,
Bahador
,
M.
,
Kneer
,
J.
, and
Bauer
,
H. J.
,
2014
, “
Experimental Study on Pressure Losses in Circular Orifices for the Application in Internal Cooling Systems
,”
ASME J. Turbomach.
,
137
(
3
), p.
031005
.
18.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
19.
Ward-Smith
,
A.-J.
,
1979
, “
Critical Flowmetering: The Characteristics of Cylindrical Nozzles With Sharp Upstream Edges
,”
Int. J. Heat Fluid Flow
, (
3
), pp.
123
132
.
You do not currently have access to this content.