This study assesses and compares two alternative approaches to determine the acoustic scattering matrix of a premixed turbulent swirl combustor: (1) The acoustic scattering matrix coefficients are obtained directly from a compressible large eddy simulation (LES). Specifically, the incoming and outgoing characteristic waves f and g extracted from the LES are used to determine the respective transmission and reflection coefficients via System Identification (SI) techniques. (2) The flame transfer function (FTF) is identified from LES time series data of upstream velocity and heat release rate. The transfer matrix of the reactive combustor is then derived by combining the FTF with the Rankine–Hugoniot (RH) relations across a compact heat source and a transfer matrix of the cold combustor, which is deduced from a linear network model. Linear algebraic transformation of the transfer matrix consequently yields the combustor scattering matrix. In a cross-comparison study that includes comprehensive experimental data, it is shown that both approaches successfully predict the scattering matrix of the reactive turbulent swirl combustor.

References

References
1.
Lefebvre
,
A. H.
,
1999
,
Gas Turbine Combustion
,
2nd ed.
,
Taylor & Francis
,
Philadelphia, PA
.
2.
Munjal
,
M. L.
,
2014
,
Acoustics of Ducts and Mufflers
,
2nd ed.
,
Wiley
,
Chichester, UK
.
3.
Su
,
J.
,
Rupp
,
J.
,
Garmory
,
A.
, and
Carrotte
,
J.
,
2015
, “
Measurements and Computational Fluid Dynamics Predictions of the Acoustic Impedance of Orifices
,”
J. Sound Vib.
,
352
, pp.
174
191
.
4.
Sovardi
,
C.
,
Aurégan
,
Y.
, and
Polifke
,
W.
,
2016
, “
Parametric LES/SI Based Aeroacoustic Characterization of Tandem Orifices in Low Mach Number Flows
,”
Acta Acust. Acust.
,
102
(
5
), pp.
793
803
.
5.
Andreini
,
A.
,
Bianchini
,
C.
,
Facchini
,
B.
,
Peschiulli
,
A.
, and
Vitale
,
I.
,
2012
, “
LES for the Evaluation of Acoustic Damping of Effusion Plates
,”
ASME
Paper No. GT2012-68792.
6.
Yoon
,
C.
,
Graham
,
O.
,
Han
,
F.
,
Kim
,
K.
,
Maxted
,
K.
,
Caley
,
T.
, and
Lee
,
J. G.
,
2017
, “
LES-Based Scattering Matrix Method for Low-Order Acoustic Network Models
,”
ASME
Paper No. GT2017-65123.
7.
Gikadi
,
J.
,
Ullrich
,
W. C.
,
Sattelmayer
,
T.
, and
Turrini
,
F.
,
2013
, “
Prediction of the Acoustic Losses of a Swirl Atomizer Nozzle Under Non-Reactive Conditions
,”
ASME
Paper No. GT2013-95449.
8.
Ni
,
F.
,
Miguel-Brebion
,
M.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2017
, “
Accounting for Acoustic Damping in a Helmholtz Solver
,”
AIAA J.
,
55
(
4
), pp.
1205
1220
.
9.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.
10.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillation
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.
11.
Polifke
,
W.
,
Paschereit
,
C. O.
, and
Döbbeling
,
K.
,
2001
, “
Constructive and Destructive Interference of Acoustic and Entropy Waves in a Premixed Combustor With a Choked Exit
,”
Int. J. Acoust. Vib.
,
6
(
3
), pp.
135
146
.
12.
Schuermans
,
B.
,
Bellucci
,
V.
,
Guethe
,
F.
,
Meili
,
F.
,
Flohr
,
P.
, and
Paschereit
,
O.
,
2004
, “
A Detailed Analysis of Thermoacoustic Interaction Mechanisms in a Turbulent Premixed Flame
,”
ASME
Paper No. GT2004-53831.
13.
Bothien
,
M.
,
Lauper
,
D.
,
Yang
,
Y.
, and
Scarpato
,
A.
,
2017
, “
Reconstruction and Analysis of the Acoustic Transfer Matrix of a Reheat Flame From Large-Eddy Simulations
,”
ASME
Paper No. GT2017-64188.
14.
Alemela
,
P. R.
,
Fanaca
,
D.
,
Ettner
,
F.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
, and
Schuermans
,
B.
,
2008
, “
Flame Transfer Matrices of a Premixed Flame and a Global Check With Modelling and Experiments
,”
ASME
Paper No. GT2008-50111.
15.
Laera
,
D.
,
Gentile
,
A.
,
Camporeale
,
S. M.
,
Bertolotto
,
E.
,
Rofi
,
L.
, and
Bonzani
,
F.
,
2015
, “
Numerical and Experimental Investigation of Thermo–Acoustic Combustion Instability in a Longitudinal Combustion Chamber: Influence of the Geometry of the Plenum
,”
ASME
Paper No. GT2015-42322.
16.
Silva
,
C. F.
,
Merk
,
M.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2017
, “
The Contribution of Intrinsic Thermoacoustic Feedback to Combustion Noise and Resonances of a Confined Turbulent Premixed Flame
,”
Combust. Flame
,
182
, pp.
269
278
.
17.
Paschereit
,
C. O.
, and
Polifke
,
W.
,
1998
, “
Investigation of the Thermo-Acoustic Characteristics of a Lean Premixed Gas Turbine Burner
,”
ASME
Paper No. 98-GT-582.
18.
Paschereit
,
C. O.
,
Schuermans
,
B. B. H.
,
Polifke
,
W.
, and
Mattson
,
O.
,
2002
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
239
247
.
19.
Gentemann
,
A.
, and
Polifke
,
W.
,
2007
, “
Scattering and Generation of Acoustic Energy by a Premix Swirl Burner
,”
ASME
Paper No. GT2007-27238.
20.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J. F.
, and
Moeck
,
J. P.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
147
173
.
21.
Polifke
,
W.
,
Poncet
,
A.
,
Paschereit
,
C. O.
, and
Döbbeling
,
K.
,
2001
, “
Reconstruction of Acoustic Transfer Matrices by Instationary Computational Fluid Dynamics
,”
J. Sound Vib.
,
245
(
3
), pp.
483
510
.
22.
Polifke
,
W.
,
2014
, “
Black-Box System Identification for Reduced Order Model Construction
,”
Ann. Nucl. Energy
,
67C
, pp.
109
128
.
23.
Fischer
,
A.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2006
, “
Comparison of Multi-Microphone Transfer Matrix Measurements With Acoustic Network Models of Swirl Burners
,”
J. Sound Vib.
,
298
(
1–2
), pp.
73
83
.
24.
Chung
,
J. Y.
, and
Blaser
,
D. A.
,
1980
, “
Transfer Function Method of Measuring In-Duct Acoustic Properties—II: Experiment
,”
J. Acoust. Soc. Am.
,
68
(
3
), pp.
914
921
.
25.
Guedra
,
M.
,
Penelet
,
G.
,
Lotton
,
P.
, and
Dalmont
,
J.
,
2011
, “
Theoretical Prediction of the Onset of Thermoacoustic Instability From the Experimental Transfer Matrix of a Thermoacoustic Core
,”
J. Acoust. Soc. Am.
,
130
(
1
), pp.
145
152
.
26.
Giauque
,
A.
,
Selle
,
L.
,
Gicquel
,
L.
,
Poinsot
,
T.
,
Buechner
,
H.
,
Kaufmann
,
P.
, and
Krebs
,
W.
,
2005
, “
System Identification of a Large-Scale Swirled Partially Premixed Combustor Using LES and Measurements
,”
J. Turbul.
,
6
, pp.
1
21
.
27.
Tay-Wo-Chong
,
L.
,
Bomberg
,
S.
,
Ulhaq
,
A.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2012
, “
Comparative Validation Study on Identification of Premixed Flame Transfer Function
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021502
.
28.
CERFACS and IMFT
,
2008
, “
The AVBP HandBook
,” Cerfacs, Toulouse, France, accessed Oct. 10, 2017, http://www.cerfacs.fr/avbp6x/
29.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.
30.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.
31.
Polifke
,
W.
,
Wall
,
C.
, and
Moin
,
P.
,
2006
, “
Partially Reflecting and Non-Reflecting Boundary Conditions for Simulation of Compressible Viscous Flow
,”
J. Comput. Phys.
,
213
(
1
), pp.
437
449
.
32.
Merk
,
M.
,
Gaudron
,
R.
,
Gatti
,
M.
,
Mirat
,
C.
,
Schuller
,
T.
, and
Polifke
,
W.
,
2018
, “
Measurement and Simulation of Combustion Noise and Dynamics of a Confined Swirl Flame
,”
AIAA J.
,
56
(5), pp. 1930–1942.
33.
Yang
,
Y.
,
Noiray
,
N.
,
Scarpato
,
A.
,
Schulz
,
O.
,
Düsing
,
K. M.
, and
Bothien
,
M.
,
2015
, “
Numerical Analysis of the Dynamic Flame Response in Alstom Reheat Combustion Systems
,”
ASME
Paper No. GT2015-42622.
34.
Innocenti
,
A.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2015
, “
Numerical Identification of a Premixed Flame Transfer Function and Stability Analysis of a Lean Burn Combustor
,”
Energy Procedia
,
82
, pp.
358
365
.
35.
Kopitz
,
J.
,
Bröcker
,
E.
, and
Polifke
,
W.
,
2005
, “
Characteristics-Based Filter for Identification of Planar Acoustic Waves in Numerical Simulation of Turbulent Compressible Flow
,”
12th International Congress on Sound and Vibration (ICSV12)
, Lisbon, Portugal, July 11–14.
36.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.
37.
Li
,
J.
, and
Morgans
,
A. S.
,
2015
, “
Time Domain Simulations of Nonlinear Thermoacoustic Behaviour in a Simple Combustor Using a Wave-Based Approach
,”
J. Sound Vib.
,
346
, pp.
345
360
.
38.
Emmert
,
T.
,
Jaensch
,
S.
,
Sovardi
,
C.
, and
Polifke
,
W.
,
2014
, “
TaX—A Flexible Tool for Low-Order Duct Acoustic Simulation in Time and Frequency Domain
,”
7th Forum Acusticum
, Krakow, Poland, Sept., pp. 7–12.
39.
Bothien
,
M.
,
Moeck
,
J.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2007
, “
Time Domain Modelling and Stability Analysis of Complex Thermoacoustic Systems
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
5
), pp.
657
668
.
40.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.